Current and Future Uses of Homestead Exemptions in Cook County Replication Materials

Code
knitr::opts_chunk$set(warning = FALSE, message = FALSE)

options(scipen = 999)

library(tidyverse)
library(glue)
library(sf)
library(DT)
library(flextable)

nicknames <- readxl::read_excel("../Necessary_Files/muni_shortnames.xlsx")

muni_sums <- read_csv("../Output/ptaxsim_muni_level_2006to2023.csv") |> 
 left_join(nicknames)


muni_mc_sums <- read_csv("../Output/ptaxsim_muni_MC_2006to2023.csv") |>
  rename_all(~str_replace(., "muni_mc_", ""))


muni_cl_sums <- read_csv("../Output/ptaxsim_muni_class_summaries_2006to2023.csv") |>
  left_join(nicknames)

muni_shp <- read_sf("../Necessary_Files/muni_shp.gpkg")

# # Create an empty data frame with a column named "year"
# params <- data.frame(year = numeric(0))
# 
# # Add the value 2021 to the "year" column
# params <- rbind(params, data.frame(year = 2021))

County-Wide Exemption Summary Statistics (Tax Year 2022)

Code
tbl <- muni_cl_sums |>
    filter(year == params$year) |>
    group_by(year) |>
    summarize(
      'PINs' = sum(muni_c_pins_in_muni),
      'PINs (w/ exemps.)' = sum(muni_c_has_HO_exemp),
      "EqAV" = sum(muni_c_equalized_av),
      'Taxed EAV' = sum(muni_c_current_taxable_eav),
      'Exempt EAV' = sum(muni_c_all_exemptions),
      'GHE' = sum(muni_c_exe_homeowner),
      'Senior' = sum(muni_c_exe_senior),
      'Senior Freeze' = sum(muni_c_exe_freeze),
      'Other Exemps.' = sum(muni_c_all_exemptions -muni_c_exe_homeowner- muni_c_exe_senior - muni_c_exe_freeze )
      ) |>
    pivot_longer(cols = c('PINs':'Other Exemps.'),
                 names_to = "Metric", values_to = "Total") |>
    select(-year) |> 
    mutate(
      Total = case_when(
        Metric %in% c("Other Exemps.", "EAV", "EqAV", "Taxed EAV", "Exempt EAV","GHE", "Senior", "Senior Freeze") ~ 
          paste0(format(round(`Total` / 1e9, 2), big.mark = ","), " B"),
        TRUE ~ format(`Total`, big.mark = ",")
      )
    )


ft <- tbl |>
    flextable(cwidth = c(1, 1)) |>
    align(j = 2, align = "right", part = "header") |>  # Align header
    align(j = 2, align = "right", part = "body") |>  # Align body
    align(i = 6:9, j = 1, align = "center", part = "body") |>  # Align body

    footnote(i = 1, j = 2, value = as_paragraph("EAV in billions."), ref_symbols = "*", part='header') #Footnote in new header
  

ft
Table 2.1: Summary of Homestead Exemption Use in Cook County (Tax Year 2022

Metric

Total*

PINs

1,865,016

PINs (w/ exemps.)

1,010,623

EqAV

221.25 B

Taxed EAV

184.15 B

Exempt EAV

15.20 B

GHE

9.97 B

Senior

2.69 B

Senior Freeze

2.45 B

Other Exemps.

0.09 B

*EAV in billions.

EqAV is the 2022 equalization factor multiplied by assessed value. Thus, Taxed EAV and Exempt EAV equal EqAV. It can be thought of as the “maximum available tax base” in a world without exemptions.

Figure 3. using EAV

Code
median_exempt <- muni_sums |>
  filter(year== params$year)|>
  mutate(muni_pct_eav_exempt =(muni_eav - muni_eav_taxed) / muni_eav) |> 
  select(muni_pct_eav_exempt, clean_name, agency_name)


midpoint = scales::percent(median(median_exempt$muni_pct_eav_exempt), accuracy = 0.01)

median_muni = median_exempt |>
  arrange(muni_pct_eav_exempt) |>
  filter(muni_pct_eav_exempt == median(muni_pct_eav_exempt)) |>
  select(clean_name) |> as.character()

print(median_exempt |>
    mutate(agency_name = ifelse(agency_name == "TOWN CICERO", "CITY OF CICERO", agency_name) ) |>
 full_join(muni_shp, by = c("agency_name" = "AGENCY_DESC")) |>
  ggplot(aes(fill = muni_pct_eav_exempt)) + 
  geom_sf(aes(geometry = geom), color = "black") + 
  theme_void()+ 
  labs(title = "Exempt EAV as a Percent of Municipality EAV") +
  theme(axis.ticks = element_blank(), 
        axis.text = element_blank())
 +
    scale_fill_stepsn(colors = c("#ffffcc",
                                 "lightblue",
                                 "#41b6c4", 
                                 "#253494",
                                 "navy"
                                 ),
                        show.limits=TRUE, 
                  breaks = c(0.075, 0.15, 0.225, 0.30, max(median_exempt$muni_pct_eav_exempt)),
                       na.value = "gray50",
                    nice.breaks = FALSE,
                        name = "% Exempt", label = scales::percent))
Figure 2.1: Share of EAV that is tax exempt due to homestead exemptions

The County-wide municipal-median percent of EAV exempt from property taxes in tax year 2022 was Bridgeview with 14.48%.

Figure 3. Using FMV

Code
median_exempt <- muni_sums |>
  filter(year == params$year)|>
  mutate(pct_fmv_exempt = muni_fmv_exempt / muni_fmv
) |> 
  select(pct_fmv_exempt, clean_name)

midpoint = scales::percent(median(median_exempt$pct_fmv_exempt), accuracy = 0.01)

median_muni = median_exempt |>
  arrange(pct_fmv_exempt) |>
  filter(pct_fmv_exempt == median(pct_fmv_exempt)) |>
  select(clean_name) |> as.character()

print(muni_sums |>
  filter(year == params$year)|>
  mutate(pct_fmv_exempt = muni_fmv_exempt / muni_fmv ) |>
    mutate(agency_name = ifelse(agency_name == "TOWN CICERO", "CITY OF CICERO", agency_name) ) |>
 full_join(muni_shp, by = c("agency_name" = "AGENCY_DESC")) |>
  ggplot(aes(fill = pct_fmv_exempt)) + 
  geom_sf(aes(geometry = geom), color = "black") + 
  theme_void()+ 
  labs(title = "Exempt FMV as a Percent of Municipality FMV",
       caption = sprintf("The County-wide municipal-median is %s", midpoint)) +
    theme_void() + 
  theme(axis.ticks = element_blank(), 
        axis.text = element_blank())+
   scale_fill_steps2(high = "darkblue", low = "black",  mid = "beige",
                       n.breaks = 5, show.limits=TRUE,
                       na.value = NA,
                    nice.breaks = FALSE,
                   midpoint = median(median_exempt$pct_fmv_exempt),
                        name = "% Exempt", label = scales::percent))
Figure 2.2: Share of FMV that is tax exempt due to Homestead Exemptions Same as previous image but in different color scheme that indicates high and low instead of using a midpoint for the color gradient.

The County-wide municipal-median percent of FMV exempt from property taxes in tax year 2022 was North Riverside with 13.43%.

The percent of municipal EAV exempt from property taxes are greatest across Cook County’s south suburbs and lowest in the northern most suburbs of the county.

Figure 4. Exempt EAV: City vs. Suburbs

Code
## makes table in margin for suburbs and city
geom_sums <- muni_cl_sums |> 
  filter(year == params$year) |> 
  select(clean_name, muni_c_all_exemptions) |>
  mutate(clean_name = ifelse(is.na(clean_name), "Unincorporated", clean_name),
         Geography = ifelse(clean_name == "Chicago", "City", "Suburbs"),
         Geography = ifelse(is.na(clean_name), "Unincorporated", Geography),
         Geography = factor(Geography, levels = c("Suburbs", "City", "Unincorporated"))) |>
  group_by(Geography) |>
  summarize("ExemptEAV" = sum(muni_c_all_exemptions, na.rm=TRUE))

geom_sums |> 
  flextable() |>
  flextable::set_caption(caption ="Includes all exemption types.")

Geography

ExemptEAV

Suburbs

9,166,789,350

City

6,035,672,661

Code
muni_cl_sums |> 
  filter(year == params$year) |> 
  select(clean_name, muni_c_exe_homeowner:muni_c_exe_vet_dis) |>
  mutate(clean_name = ifelse(is.na(clean_name), "Unincorporated", clean_name),
    Geography = ifelse(clean_name == "Chicago", "City", "Suburbs"),
         Geography = ifelse(is.na(clean_name), "Unincorporated", Geography),
         Geography = factor(Geography, levels = c("Suburbs", "City", "Unincorporated"))) |>
  group_by(Geography) |>
  summarize("GHE" = sum(muni_c_exe_homeowner, na.rm=TRUE),
            "Senior Homestead" = sum(muni_c_exe_senior, na.rm=TRUE),
            "Senior Freeze" = sum(muni_c_exe_freeze, na.rm=TRUE),
            "Other Exemptions" = sum(muni_c_exe_longtime_homeowner+muni_c_exe_disabled+muni_c_exe_vet_returning+ muni_c_exe_vet_dis_lt50 + muni_c_exe_vet_dis_50_69+muni_c_exe_vet_dis_ge70)) |>
  
  pivot_longer(cols = c(`GHE`:`Other Exemptions`), names_to = "Type" ) |>
   mutate(Type = factor(Type, levels = c("GHE", "Senior Homestead", "Senior Freeze", "Other Exemptions" 
                                         #"Senior Freeze", "Senior Homestead", "GHE"
                                        )
                                        )) |>
  ggplot(aes(x=Type, y = value/1e9, fill = Geography
             )) +
  
  geom_col( position = "dodge" ) +
  geom_text(aes(label = round(value/1e9, digits=1)), vjust=-0.5, position = position_dodge(.9)) +
  theme_minimal() +
  labs(title = paste0("Exempt EAV in Cook County, Tax Year ", params$year), 
       subtitle = "by Type and Geography", 
       y = "EAV (Billions)", x = "Exemption Type") + 
  scale_y_continuous(limits = c(0, 8)) +
  scale_fill_manual(values = c("blue3", "deepskyblue3", "gray") )
Figure 2.3: Exempt EAV in Cook County Exemption use varies between suburban Cook County and the City of Chicago which may point to broader socioeconomic patterns as well as residents’ eligibility and update. Note: Our current calculations undervalue the disabled veterans exemption.

Exemption use varies between suburban Cook County (9166789350 EAV) and the City of Chicago (6035672661 EAV) , which may point to broader socioeconomic patterns as well as residents’ eligibility and uptake.

Figure 5. Value of residential exemptions by type in Cook County over time, Tax Years 2006 - 2022

Code
muni_cl_sums |> 
  select(year, muni_c_exe_homeowner:muni_c_exe_vet_dis) |>
  filter(year <= params$year) |>
  group_by(year) |>
  summarize("GHE" = sum(muni_c_exe_homeowner, na.rm=TRUE),
            "Senior Homestead" = sum(muni_c_exe_senior, na.rm=TRUE),
            "Senior Freeze" = sum(muni_c_exe_freeze, na.rm=TRUE),
            "Other Exemptions" = sum(muni_c_exe_longtime_homeowner + muni_c_exe_disabled + muni_c_exe_vet_returning+ muni_c_exe_vet_dis_lt50 + muni_c_exe_vet_dis_50_69+muni_c_exe_vet_dis_ge70, na.rm = T)) |>
  pivot_longer(cols = c(`GHE`:`Other Exemptions`), names_to = "Type" ) |>
  mutate(Type = factor(Type, levels = c(#"GHE", "Senior Homestead", "Senior Freeze", 
                                        "Other Exemptions", "Senior Freeze", "Senior Homestead", "GHE"))) |>
  ggplot(aes(x=year, y = value/1000000000, fill = Type)) +
  
  geom_bar( stat = "identity" ) + 
  theme_minimal() +
  labs(title = "Residential Exempt EAV in Cook County", 
       subtitle = paste0("by Type and Geography, 2006-", params$year), 
       y = "EAV (Billions)", x ="") +
  scale_fill_manual(values = c("chartreuse2",  "darksalmon", "brown2", "blue4" )) +
                    scale_x_continuous(breaks = c(2006, 2010, 2015, 2020))
Figure 2.4: Residential Exempt EAV in Cook County

Trends in the total EAV reductions due to homestead exemptions reflect both real estate market shifts and the legislative changes in their availability, eligibility, and value.

Effect on Composite Tax Rates

Figure 6 will not be recreated but is just a bar chart of the change in tax rate in the table below

Table 1. Change in composite property tax rates due to exemptions, tax year 2022.

Code
muni_ratechange <- read_csv(paste0("../Output/muni_ratechange_", params$year, "_test.csv"))


muni_ratechange |> 
  select(clean_name,  current_rate_avg, rate_noExe, change_noExe, final_tax_to_dist 
         ) |> 
  mutate(change_noExe = change_noExe * 100) |>
  DT::datatable(rownames = FALSE, colnames = c('Municipality' = 'clean_name','Current Comp. Rate' = 'current_rate_avg', 'Hypothetical Rate' = 'rate_noExe',  'Composite Tax Rate Change'='change_noExe', 

                       'Composite Levy' = 'final_tax_to_dist'),
          caption = "Table 1 in Report for all Municipalities: Current and Hypothetical Composite Tax Rates if GHE $0") |>
  formatCurrency('Composite Levy', digits = 0) |>
  formatPercentage(columns = c(2,3), digits = 2)
Table 2.2: Searchable table containing all municipalities and the hypothetical tax rate change if exempt EAV became taxable.
Code
muni_ratechange |>
  filter(!is.na(clean_name)) |> 
  select(clean_name,  current_rate_avg, rate_noExe, change_noExe 
) |>
  mutate(across(c(current_rate_avg, rate_noExe, change_noExe ), ~.*100)) |>
  arrange(desc(change_noExe)) |>
  slice(c(1:5, 69:73, 121:125)) |>
    #slice(c(1:5, 58:62, 115:119)) |>

  flextable() |> 
  border_remove() |>
  hline_top() |>
  hline(i = c(5,10)) |>
  
  set_header_labels(
    clean_name = "Municipality", 
    current_rate_avg = "With Exemptions",
    rate_noExe = "Without Exemptions",
    change_noExe = "Percent Point Difference"
    
  ) |>
  align(j = 2, align = "right") |>
  align(j=2, align = "right", part = "header") |>
  set_table_properties( layout = "autofit") |> bold(i = 8)
Table 2.3: Table 1 in Exemption Report. Shows the top 5, bottom 5, and median 5 municipalities, ranked by change in composite tax rate. Includes all exemption types in calculation of rate change.

Municipality

With Exemptions

Without Exemptions

Percent Point Difference

Park Forest

43.60

28.77

14.56

Phoenix

30.77

20.32

10.40

Riverdale

32.68

25.03

7.25

Dolton

26.68

19.74

6.61

Hazelcrest

26.46

19.21

6.42

Indian Head Park

8.97

7.78

1.23

Merrionette Park

12.03

10.81

1.22

La Grange Park

10.81

9.49

1.21

Bridgeview

13.82

12.72

1.19

Forest Park

12.26

11.03

1.14

Hinsdale

8.07

7.83

0.23

Glencoe

7.82

7.62

0.20

Kenilworth

8.09

7.90

0.18

Winnetka

7.47

7.28

0.18

Hodgkins

10.98

10.52

0.08

Figure 7. Map of Spatial Patterns in Composite Tax Rate Change

Change in composite tax rate if exempt EAV was added back to the the taxable tax base (i.e. if there were no exemptions).

Code
muni_ratechange  |>
    mutate(across(c(current_rate_avg, rate_noExe, change_noExe ), ~.*100)) |>

  left_join(nicknames, by = "clean_name") |>
  mutate(agency_name = ifelse(agency_name == "TOWN CICERO", "CITY OF CICERO", agency_name),
         shpfile_name = ifelse(agency_name == "TOWN CICERO", "CITY OF CICERO", agency_name) ) |>
  full_join(muni_shp, by = c("agency_name" = "AGENCY_DESC")) |>

  ggplot(aes(fill = change_noExe)) + 
  geom_sf(aes(geometry = geom), color = "black") + 
  theme_void() + 
  theme(axis.ticks = element_blank(), axis.text = element_blank())+
   scale_fill_stepsn(colors = c( "#F7FEF5",
                                # "#e4f1e0",
                                "#d4f6cc",
                                "#47ba24",
                                "#1F6805",
                                "#133C04"),
                        show.limits=TRUE, 
                     limits = c(0, 15),
                     breaks = c(0, 2.5, 5, 7.5, 10, 15),
                     na.value = NA,
                        name = "Rate Change from \nExemptions"  
                    )

Effect on Tax Burdens

Figure 8. Dolton example of Share of levy paid by property type

CMAP used a donut chart, we will use a bar chart that represents 100% on the x a axis. Values are currently an ungrouped table below

Code
#read_csv(paste0("../../Output/Dont_Upload/0_Joined_PIN_data_", params$year, ".csv") )

pin_data <- read_csv(paste0("../Output/Dont_Upload/0_joined_PIN_data_", params$year, "_test.csv"))


mc_burden <- read_csv(paste0("../Output/muni_mc_burden_", params$year, "_test.csv"))


burden_shift <- read_csv(paste0("../Output/muni_burden_shift_", params$year, "_test.csv"))
Code
burden_c2 <- mc_burden |> 
  filter(class_1dig == 2) |> 
  select(clean_name, #pct_taxbase, 
         burden_shift,  pct_taxburden_current, hyp_pct_taxburden)

burden_shift |>  
  select(-c(muni_levy, muni_taxbase,))|>
  DT::datatable(rownames = FALSE, 
                colnames = c(
                  'Municipality' = 'clean_name',
                  'Current Taxbase' = 'group_taxbase', 
                  'Hyp. Taxbase' = 'hyp_group_taxbase',  
                  'Taxes Paid'='group_taxes_current', 
                  'Hyp Taxes Paid' = 'hyp_group_taxes',
                  'Share of Levy'='pct_taxburden_current',
                  'Share of Taxbase' = 'pct_taxbase_current'
                  ),
                caption = "Table 2 in Report for all Municipalities: Current and Hypothetical Composite Tax Rates if GHE $0"
      ) |>
  formatCurrency(columns = c(3:6), digits = 0) |>
  formatPercentage(columns = c(7,8), digits = 2)
Code
mc_burden |> 
    mutate(pct_taxburden_current = round(pct_taxburden_current * 100, digits = 2),
           hyp_pct_taxburden = round(hyp_pct_taxburden * 100, digits = 2) ) |>

  filter(clean_name == "Dolton") |> 
  select(`Major Class`= class_1dig, `Current Tax Burden` = pct_taxburden_current, `Alt. Burden` = hyp_pct_taxburden) |> 
  arrange(desc(`Current Tax Burden`)) |>
  flextable::flextable()
Table 2.4: Ungrouped values for donut chart in report. Tax Burden is the Revenue Collected from a Major Class / the combined levy from local taxing agencies (non-TIF) in Dolton, IL.

Major Class

Current Tax Burden

Alt. Burden

2

64.15

73.16

5

30.32

22.72

1

2.06

1.54

8

1.52

1.14

3

0.92

0.69

6

0.60

0.45

9

0.36

0.27

4

0.07

0.05

0

0.00

0.00

Figure 9. Change in Share of Tax Burden

Was made in Excel. Not recoded for website yet.

Table 2. Change in share of property tax burden

Table 2: Change in the share of property tax burden due to exemptions for single-family, multi-family, and commercial and industrial properties, tax year 2022

Code
## Current tax burden 
burden_shift |>  
    select(clean_name, Group, pct_taxburden_current) |>
  mutate(pct_taxburden_current = pct_taxburden_current) |>
pivot_wider(id_cols = clean_name, names_from = Group, values_from = pct_taxburden_current) |>
  arrange((`Single-family`)) |>
  DT::datatable(rownames = FALSE, colnames = c('Municipality' = 'clean_name')) |>
  formatPercentage(c(2,3,4))
Code
## burden change table
burden_shift |>  
    select(clean_name, Group, burden_shift) |>
  mutate(burden_shift = round(burden_shift, digits =4)) |>
pivot_wider(id_cols=clean_name, names_from = Group, values_from = burden_shift) |>
  arrange((`Single-family`)) |> 
  DT::datatable(rownames = FALSE) 
Code
datatable(burden_c2, rownames = FALSE,
          colnames = c('Municipality' = 'clean_name', 
                       'Burden Shift, Pct Pt Change' = 'burden_shift', 
                       'Current Tax Burden\nC2 Tax Collected / Muni Levy' = 'pct_taxburden_current', 
                       "Hypothetical Tax Burden\nHyp. C2 Tax Collected / Muni Levy" = 'hyp_pct_taxburden'),
          caption = "Table 2 in Exemption Report: Current Share of Taxable EAV and Share of Levy Paid by Class 2 Properties"
           ) |>
  formatPercentage(c(2,3,4), digits = 2) |>
  formatRound(c(2), digits = 2)

Figure 9 Follow up. Current Tax Burden Map

Code
burden_c2 |>
  left_join(nicknames) |>
  mutate(agency_name = ifelse(agency_name == "TOWN CICERO", "CITY OF CICERO", agency_name) ) |>
  full_join(muni_shp, by = c("agency_name" = "AGENCY_DESC")) |>

  ggplot(aes(fill = pct_taxburden_current)) + 
  geom_sf(aes(geometry = geom), color = "black") + 
  theme_void() + 
  theme(axis.ticks = element_blank(), axis.text = element_blank())+
  # scale_fill_gradientn(
   scale_fill_stepsn(colors = c("#ffffcc","#a1dab4" ,"#41b6c4","#2c7fb8", "#253494"),
                        show.limits=TRUE, 
                     limits = c(0,1),
                     na.value = "gray70",
                     n.breaks = 6,
                        name = "Burden with \nExemptions", 
                     labels = scales::percent
                     
                    )+
  labs(title = "Current share of property tax burden", 
       subtitle = "for Class = 2 Property Types")

Table 3.

Difference in taxbills for those that do and do not claim homeowner exemption

Code
## removes properties that have more than one exemption type
C2_munistats_filtered <- pin_data |> 
  filter(class > 199 & class < 300) |>
    filter(exe_senior == 0 & 
           exe_freeze == 0 & 
           exe_longtime_homeowner == 0 & 
           exe_disabled == 0 & 
           exe_vet_returning == 0 & 
           exe_vet_dis_lt50 == 0 & 
           exe_vet_dis_50_69 == 0 & 
           exe_vet_dis_ge70 == 0 & 
           exe_abate == 0) |>
  group_by(clean_name)  |>
  arrange(av) |>
summarize(
    median_eq_av = round(median(eq_av)),
    median_taxed_eav = round(median(eq_av-all_exemptions)),
    median_av = round(median(av)), 
    avg_av = round(mean(av)),
    avg_eq_av = round(mean(eq_av)),
    avg_taxed_eav = round(mean(eq_av-all_exemptions)),

    C2_pins_in_muni = n(),
    C2_current_exemptions = sum(all_exemptions, na.rm = TRUE),
    C2_HO_exemps = sum(exe_homeowner, na.rm = TRUE),
  )

C2_munistats_filtered |>  
  DT::datatable(rownames = FALSE, 
                colnames = c(
                  'Median AV*eq_factor' = 'median_eq_av',
                  'Average Eq.AV' = 'avg_eq_av',
                  'Median Taxed EAV' = 'median_taxed_eav', 
                  'Median AV' = 'median_av',  
                  'Average AV'='avg_av', 
                  'Class 2 Hyp Taxes Paid' = 'avg_taxed_eav',
                  'Class 2 Pin Count'='C2_pins_in_muni',
                  'Class 2 Exempt EAV' = 'C2_current_exemptions'
                  ),
                caption = "Class 2 Descriptive Statistics"
      ) |>
  formatCurrency(columns = c(2:7, 9,10), digits = 0)
Code
## Grouped by if they have a $0 tax bill and had the GHE per muni


muni_median_summarytable <- pin_data |> 
  select(pin, av, class, tax_code_num, tax_bill_total, av_certified, exe_homeowner:exe_abate, clean_name, eq_av, all_exemptions, zero_bill, has_HO_exemp, taxed_eav, final_tax_to_dist, final_tax_to_tif) |>

  filter(class > 199 & class < 300) |> 
  
  # merge in muni residential median AV
  left_join(C2_munistats_filtered |> select(clean_name, median_av, median_eq_av, median_taxed_eav)) |>
  
  left_join(muni_ratechange |> select(clean_name, rate_noExe, rate_noGHE, rate_current)) |>
  # +/- 500 from municipalities median residential AV
  filter(av < median_av+200 & av > median_av-200) |>
  
  # Removes properties that received other types of exemptions
  filter(exe_senior == 0 & 
           exe_freeze == 0 & 
           exe_longtime_homeowner == 0 & 
           exe_disabled == 0 & 
           exe_vet_returning == 0 & 
           exe_vet_dis_lt50 == 0 & 
           exe_vet_dis_50_69 == 0 & 
           exe_vet_dis_ge70 == 0 & 
           exe_abate == 0) |>
  
  arrange(av) |>
  
  mutate(#bill_current = (final_tax_to_dist + final_tax_to_tif),
         bill_current = rate_current* taxed_eav,
         bill_noexemps =  rate_noGHE*(eq_av-all_exemptions+exe_homeowner),
         bill_change = bill_noexemps - bill_current) |>
  # 
  group_by(clean_name, 
           has_HO_exemp) |> 
  
  summarize(AV = median(median_av), # median_av was calculated earlier: C2 median AV for the muni 
            `Taxable EAV` = round(median(eq_av)),
            `Taxed EAV` = round(median(taxed_eav)),
            bill_cur = round(median(bill_current)),
            bill_new = round(median(bill_noexemps)),
            bill_change = round(median(bill_change)),
            pincount=n(),
            perceived_savings = round(median(all_exemptions*rate_current))
            ) |> 
  
  # merge in clean_names variable
  left_join(nicknames) |>
  
  select(clean_name, has_HO_exemp, bill_cur, bill_new, bill_change, perceived_savings,  AV, `Taxable EAV`, `Taxed EAV`, 
         #everything() 
         ) #|> select(-c(agency_number, agency_name))

muni_median_summarytable |>
  DT::datatable(rownames = FALSE, 
                colnames = c(
                  'Claims GHE' = 'has_HO_exemp',
                  'Current Bill' = 'bill_cur',
                  'Hyp. Bill' = 'bill_new', 
                  'Bill Change' = 'bill_change',  
                  'Perceived Savings'='perceived_savings'),
                caption = "Change in Tax Bill if Exempt EAV from GHE were added back to tax base.")  |>
  formatCurrency(columns = c(3:9), digits = 0)
Code
muni_median_summarytable |>
  filter(clean_name %in% c("Chicago", "Dolton", "Glencoe")) |>
  DT::datatable(rownames = FALSE, 
                colnames = c(
                  'Claims GHE' = 'has_HO_exemp',
                  'Current Bill' = 'bill_cur',
                  'Hyp. Bill' = 'bill_new', 
                  'Bill Change' = 'bill_change',  
                  'Perceived Savings'='perceived_savings'))  |>
  formatCurrency(columns = c(3:9), digits = 0)
Table 2.5: Table 3. Estimated Bill Change if exempt EAV from the GHE were added to back to the tax base.
Code
cholton_15000_summarytable <- pin_data |> 
  
  select(pin, av, class, tax_code_num, tax_bill_total, av_certified, exe_homeowner:exe_abate, clean_name, eq_av, all_exemptions, zero_bill, has_HO_exemp, taxed_eav, final_tax_to_dist, final_tax_to_tif) |>
  filter(clean_name %in% c("Chicago", "Dolton", "Glencoe")) |>
  filter(between(av, 14800, 15200)) |>

  filter(class > 199 & class < 300) |> 
  
  # merge in muni residential median AV
  left_join(C2_munistats_filtered |> select(clean_name, median_av)) |>
  
  left_join(muni_ratechange |> select(clean_name, rate_noExe, rate_noGHE, rate_current)) |>
  # +/- 500 from municipalities median residential AV
  # Removes properties that received other types of exemptions
  filter(exe_senior == 0 & 
           exe_freeze == 0 & 
           exe_longtime_homeowner == 0 & 
           exe_disabled == 0 & 
           exe_vet_returning == 0 & 
           exe_vet_dis_lt50 == 0 & 
           exe_vet_dis_50_69 == 0 & 
           exe_vet_dis_ge70 == 0 & 
           exe_abate == 0) |>
  
  arrange(av) |>
  
  mutate(
         bill_current = rate_current* taxed_eav,
         bill_noexemps =  rate_noGHE*(eq_av-all_exemptions+exe_homeowner),
         bill_change = bill_noexemps - bill_current) |>
  # 
  group_by(clean_name, 
           has_HO_exemp) |> 
  
  summarize(AV = median(av),
    `Median AV in Muni` = first(median_av), # median_av was calculated earlier: C2 median AV for the muni 
            `EqAV` = round(median(eq_av)),
            `Taxed EAV` = round(median(taxed_eav)),
            bill_cur = round(median(bill_current)),
            bill_new = round(median(bill_noexemps)),
            bill_change = round(median(bill_change)),
            pincount=n(),
            perceived_savings = round(median(all_exemptions*rate_current))
            ) |> 
  
  # merge in clean_names variable
  left_join(nicknames) |>
  
  select(clean_name, AV, has_HO_exemp, bill_cur, bill_new, bill_change, perceived_savings,  `Median AV in Muni`, `EqAV`, `Taxed EAV`
         #everything() 
         ) |>

  DT::datatable(rownames = FALSE, 
                colnames = c(
                  'Claims GHE' = 'has_HO_exemp',
                  'Current Bill' = 'bill_cur',
                  'Hyp. Bill' = 'bill_new', 
                  'Bill Change' = 'bill_change',  
                  'Perceived Savings'='perceived_savings'),
                caption = "Change in Tax Bill for Properties with an Assessed Value of $15,000.")  |>
  formatCurrency(columns = c(2, 4:9), digits = 0)

cholton_15000_summarytable

Table 4.

Municipalities with the largest and smallest reductions in tax base (as a share of residential EAV due to exemptions) and median property values

Figure 10. Tax Burden Shift from Current GHE

Share of municipal property tax levy paid by Class 2 properties with and without homestead exemptions, tax year 2022

Code
# as a dot graph ## 

order <- mc_burden |>
  filter(class_1dig == 2) |>
    select(clean_name, pct_taxburden_current, burden_shift)

slice <-  mc_burden |>
  filter(class_1dig == 2) |>
    select(clean_name, pct_taxburden_current, burden_shift) |>
  arrange(pct_taxburden_current) |>
  slice(1:5, 63:67, 127:131)



median_burden <- median(order$pct_taxburden_current)
median_shift <- median(order$burden_shift)

# median burden change is 5.9 percentage points
# current median burden is 70.3% of the levy

mc_burden |> 
  filter(clean_name %in% slice$clean_name) |>
#filter(!clean_name %in% cross_county_lines$clean_name)|>
  filter(class_1dig == 2) |>
#  filter(burden_current > 0.938 |burden_current < .17 |
 #          ( (burden_current < median(burden_current) + 0.01 )& (burden_current > median(burden_current) - 0.01)) )|> 
  ungroup() |> 
      select(clean_name, pct_taxburden_current, hyp_pct_taxburden, burden_shift) |>
  arrange(burden_shift) |>
  pivot_longer(c("pct_taxburden_current", "hyp_pct_taxburden"), 
               names_to = "type", values_to = "pct_burden") |> 
  inner_join(order) |>
  ggplot(aes(x = pct_burden, 
             y= reorder(clean_name, - pct_taxburden_current)))+
  # y= reorder(clean_name, burden_current)))+
  geom_vline(xintercept = median_burden, linetype = 3)+
  geom_line(aes(group = clean_name))+ 
  geom_hline(yintercept = 5.5, linetype = 2)+
  geom_hline(yintercept = 10.5, linetype = 2)+
  geom_point(aes(color=type), size=3 )+

  theme_minimal() + 
  theme( 
    legend.title = element_blank(),
    plot.title.position = "plot",
 plot.background = element_rect(fill='transparent', color=NA) 
  )+
  scale_color_brewer(palette="Paired", labels = c("Current Burden", "Burden if \nNo Exemptions" ), direction = 1) +
  scale_x_continuous(labels = scales::percent) +

  
  labs(title = "Change in Class 2 Residential Tax Burden", 
       subtitle = "Ordered by Current Tax Burden",
  x = "Share of Levy (%)", y = "" , 
  caption = paste0("Dotted line represents median Class 2 burden (", round(median_burden*100), "% of the levy).  \nResidential Tax Burden is theshare of the property tax collected that was paid for by property owners with Class 2 properties.")) +
  
    geom_label(label = "Class 2 pays small share of \nlevy; very little residential", x=.32, y = 13, label.size = 1, size = 3)+
  
    geom_label(label = paste0("Class 2 pays median share of \nlevy (", round(median_burden*100), "%), mix of land use"), x=.42, y = 7.5, label.size = 1, size = 3) +
  
    geom_label(label = "Class 2 pays nearly all of levy, \nhighly residential", x=.70, y = 3, label.size = 1,size = 3)
Figure 2.5

Figure 11. Zero Dollar Bills

Code
muni_mc_sums |> 
  left_join(nicknames) |>
  filter(major_class_code == 2) |> 
  group_by(year, Triad) |>
  summarize(zerodollar_count = sum(zero_bill)) |> 
  ggplot(aes(x=year, y = zerodollar_count, fill = Triad)) + 
  geom_bar(position = "stack", stat = "identity") + theme_minimal()+
  theme(legend.position = "top")+
  labs(title = element_text("Number of $0 Taxbills")) +
  scale_y_continuous(labels = scales::comma, limits = c(0, 35000), name = "")
Figure 2.6: Number of tax bills that were $0 shown here is different than the value shown in the exemption report. This is due to missing disabeled veteran exemption amounts that were not identified when writing the original report.

Table 6

Not recreated in code yet.

Additional notes

Multiple ways to measure “burden”:

  • Share of tax base = (taxed EAV / taxed EAV in Muni)
  • Tax Burden = tax paid / levy
  • Effective rate = tax paid / property value