Incentive Classifications

Supporting Content for Cook County C&I Report

Code
knitr::opts_chunk$set(warning = FALSE, message = FALSE)

options(scipen = 999)

library(tidyverse)
library(glue)
library(sf)
library(DT)
library(flextable)

nicknames <- readxl::read_excel("../Necessary_Files/muni_shortnames.xlsx")

cook_sums <- read_csv("../Output/ptaxsim_cook_level_2006to2023_new.csv") 

muni_sums <- read_csv("../Output/ptaxsim_muni_level_2006to2023_new.csv") |> 
 left_join(nicknames)


muni_mc_sums <- read_csv("../Output/ptaxsim_muni_MC_2006to2023_new.csv") |>
  rename_all(~str_replace(., "muni_mc_", ""))


muni_cl_sums <- read_csv("../Output/ptaxsim_muni_class_summaries_2006to2023.csv") |>
  left_join(nicknames)

muni_shp <- read_sf("../Necessary_Files/muni_shp.gpkg")

# Create an empty data frame with a column named "year"
params <- data.frame(year = numeric(0))

# Add the value 2021 to the "year" column
params <- rbind(params, data.frame(year = 2022))




knitr::opts_chunk$set(warning = FALSE, message = FALSE)

set_flextable_defaults(theme_fun = theme_vanilla, 
                       padding = 2,
                       line_spacing = 1,
                       big.mark = ",",
                       )

options(DT.options = list())

FitFlextableToPage <- function(ft, pgwidth = 6){

  ft_out <- ft %>% autofit()

  ft_out <- width(ft_out, width = dim(ft_out)$widths*pgwidth /(flextable_dim(ft_out)$widths))
  return(ft_out)
}

pin_data <- read_csv(paste0("../Output/Dont_Upload/0_joined_PIN_data_", params$year, "_test.csv"))


eq_factor <- read_csv("../Necessary_Files/eq_factor.csv") |> 
  filter(year == params$year) |> 
  select(eq_factor = eq_factor_final) |> 
  as.numeric()
Code
# Workaround for identifying more project IDs. 
# Used Appeal ID to create unique identifier to group PINs.
bor <- read_csv("../Output/borappeals.csv") %>% 
  mutate(project_appellant = paste(project_id, sep = "-", appellant))
# modelsummary::datasummary_skim(bor)


# Cleaned PIN-Project list after cleaning the commercial valuation dataset found online. 
# Another temporary work-around until we (maybe) have full keypin list:
proj_xwalk <- read_csv("../Output/all_keypins.csv")               
# all commercial valuation properties but made with not-quite-clean data from commercial valuation dataset on Cook County Data Portal (which was made from combining the Methodology worksheets) 
# Values are also only the FIRST PASS assessments and do not include appeals or changes in values

# Join project IDs to PINs:
pin_data <- pin_data %>% left_join(proj_xwalk)


# original class_dict variables already in 0_joined data
# but I do want the new-ish variables I created to be brought in:
class_dict <- read_csv("../Necessary_Files/class_dict_expanded.csv") %>%
  select(class_code, comparable_props, land_use=Alea_cat)

# "Frankfort", "Homer Glen",  "Oak Brook", "East Dundee", "University Park",  "Bensenville", "Hinsdale", "Roselle", "Deer Park", "Deerfield"

cross_county_lines <- c("030440000", "030585000", "030890000", "030320000", "031280000",
                        "030080000", "030560000", "031120000", "030280000", "030340000",
                        "030150000","030050000", "030180000","030500000", "031210000")


pin_data <- pin_data %>% 
  left_join(class_dict, by =  c("class" = "class_code")) %>%
  mutate(clean_name = ifelse(is.na(clean_name), "Unincorporated", clean_name)) %>%
  filter(!agency_num %in% cross_county_lines)

# BOR data source shortfall: We only have the data if they appeal!

bor_pins <- bor %>% 
  group_by(pin) %>% 
  arrange(desc(tax_year)) %>%
  summarize(pin = first(pin),              # grabs first occurrence of unique PIN
            class_bor = list(unique(class)),
            appellant = first(appellant),
            project_id = first(project_id), 
            timesappealed = n() ) %>%
  mutate(proj_appellant = paste(project_id, "-", appellant))

pin_data <- pin_data %>% left_join(bor_pins, by = "pin")

# now do it the other way and compare

pin_data <- pin_data %>% 
  mutate( both_ids = project_id,
          both_ids = ifelse(is.na(both_ids), keypin, both_ids),
          both_ids = ifelse(is.na(both_ids) & between(class, 300, 899), pin, both_ids))

incentive_majorclasses <- c("6", "7A", "7B", "8A", "8B")

commercial_classes <- c(401:435, 490, 491, 492, 496:499,
                        500:535,590, 591, 592, 597:599, 
                        700:799,
                        800:835, 891, 892, 897, 899)  

industrial_classes <- c(480:489,493, 
                        550:589, 593,
                        600:699,
                        850:890, 893
                        )

pin_data <- pin_data %>% 
  mutate(
    exempt_eav_inTIF = ifelse(in_tif_andpays_revtotif == 1, all_exemptions, 0),
    
    untaxable_incent_eav = ifelse(incent_prop == 1,
                                  (taxed_av/loa*0.25 - taxed_av)*eq_factor, 0),
    
    #  manually adjust untaxable value of class 239 properties
    untaxable_value_eav = ifelse(class == 239,
                                 eq_av-taxed_eav, untaxable_value_eav),
    

    naive_rev_forgone =  untaxable_incent_eav * tax_code_rate/100) %>%
  
  select(tax_code_num, class, pin, fmv,
         untaxable_value_fmv, fmv_inTIF, fmv_tif_increment, fmv, tax_bill_total, final_tax_to_dist, final_tax_to_tif, tax_code_rate, taxed_eav, eq_av, av, everything())
Code
pin_data %>% 
  filter(naive_rev_forgone > 0) %>% 
  select(pin, class, fmv, naive_rev_forgone, untaxable_incent_eav, taxed_eav, everything())
pin_data %>%
  filter(naive_rev_forgone > 0) %>% 
  summarize(fmv = sum(fmv),                                                   
            naive_rev_forgone = sum(naive_rev_forgone),                      
            untaxable_incent_eav = sum(untaxable_incent_eav),                     
            taxed_eav = sum(taxed_eav))
Table 7.1: PIN level tax savings due to incentive classification. Also can be viewed as the shifted tax burden from PINs with incentive classification in 2022 to all other non-incentive PINs. Sorted from largest tax bill savings to smallest bill reduction.

Total Value should equal Current Taxable Value + non-Taxable Value where non-Taxable Value = Value in TIF Increment + Reduced Value from Policy Choices where Reduced Value = Tax Exempt Value from Homeowners exemptions or abatements + Reduced Taxable Value from lower levels of assessments due to incentive classifications:

\[\mbox{Total Value = Taxed Value + Untaxable Value}\]

where

\[\mbox{Untaxable Value = TIF Increment + Exemptions + Abatements + Reduced Taxable Value from Lower Incentive Class Assessment Ratios}\]

where

\[\mbox{Reduced Taxable Value from Incentive Classification Levels of Assessments}\] \[\mbox{which then equals } {0.25 \ast EAV - \approx0.10 \ast EAV}\]

Cook County Total Value

\[ \mbox{AV = Fair Market Value * Level of Assessment} \]

\[ \mbox{Tax Rate} = \frac{\mbox{Amount Levied by Taxing Districts}}{\mbox{Taxable Value}} \]

Taxed Value refers to what taxing agencies did tax to pay for their levies. We use the portion of the tax bill that does NOT go to TIFs to calculate the portion of the composite levy paid by each PIN and then sum up from there.

\[ \mbox{Final Tax to District} = \mbox{Portion of Levy Paid by PIN} = {\mbox{Tax Code Rate}}*{\mbox{Taxable Value of PIN}} \]

\[\mbox{Equalized Assessed Value} = {\frac{\mbox{final tax to dist + final tax to TIF}}{\mbox{tax code rate}} + \mbox{Exemptions + Abatements}}\]

\[\mbox{Taxed EAV} = {\frac{\sum{final\_tax\_to\_dist}}{\mbox{tax code rate}} + \mbox{Exemptions + Abatements}}\]

\[\mbox{Taxed AV} = {\frac{\frac{\sum{final\_tax\_to\_dist}}{\mbox{tax code rate}} + \mbox{Exemptions + Abatements}}{\mbox{county equalizer}}}\]

Code
table_cook <- pin_data %>%
  summarize( 
    cty_PC = n(),
    cty_PC_industrial = sum(ifelse(class %in% industrial_classes, 1, 0), na.rm = TRUE),
    cty_PC_commercial = sum(ifelse(class %in% commercial_classes, 1, 0), na.rm = TRUE),
    cty_PC_com_incent = sum(ifelse(class %in% commercial_classes & incent_prop == "Incentive", 1, 0), na.rm = TRUE),
    cty_PC_com_incent_inTIF = sum(ifelse(class %in% commercial_classes & incent_prop == "Incentive" & in_tif == 1, 1, 0), na.rm = TRUE),
    cty_PC_ind_incent = sum(ifelse(class %in% industrial_classes & incent_prop == "Incentive", 1, 0), na.rm = TRUE),
    cty_PC_ind_incent_inTIF = sum(ifelse(class %in% industrial_classes & incent_prop == "Incentive" & in_tif == 1, 1, 0), na.rm = TRUE),
    
    cty_PC_incent = sum(ifelse(incent_prop == "Incentive", 1, 0)),
    
    cty_PC_comandind =  sum(ifelse((class %in% commercial_classes | class %in% industrial_classes), 1, 0)),
    
    cty_PC_comandind_inTIF =  sum(ifelse((class %in% commercial_classes | class %in% industrial_classes) & in_tif == 1, 1, 0)),
    cty_PC_incent_inTIF =  sum(ifelse(between(class, 600, 900) & in_tif == 1, 1, 0)),
    
   # cty_projects = n_distinct(both_ids), # mostly for industrial and commercial properties. Purposely not assigning keypins to residential properties. 
    
    cty_fmv_incentive = sum(ifelse(between(class, 600, 900), fmv, 0), na.rm = TRUE),
    cty_fmv_incent_inTIF = sum(ifelse(between(class, 600, 900) & in_tif == 1, fmv, 0), na.rm = TRUE),
    cty_fmv_inTIF = sum(fmv_inTIF, na.rm=TRUE),
    cty_fmv_incents_tif_increment = sum(fmv_incents_tif_increment, na.rm=TRUE),
    cty_fmv_tif_increment = sum(fmv_tif_increment, na.rm=TRUE),
    
    cty_fmv_untaxable_value = sum(untaxable_value_fmv , na.rm=TRUE),
    cty_fmv = sum(fmv, na.rm=TRUE),
    cty_fmv_exemptions = sum(all_exemptions/eq_factor/loa, na.rm=TRUE),
    cty_fmv_abatements = sum((abatements/eq_factor)/loa, na.rm=TRUE),
    cty_fmv_residential = sum(ifelse(class %in% c(200:399), fmv, 0), na.rm = TRUE),
    cty_fmv_industrial = sum(ifelse(class %in% industrial_classes, fmv, 0), na.rm = TRUE),
    cty_fmv_indwithincent = sum(ifelse(class %in% industrial_classes & incent_prop == "Incentive", fmv, 0), na.rm = TRUE),
    cty_fmv_ind_incent_inTIF= sum(ifelse(class %in% industrial_classes & incent_prop == "Incentive" & in_tif == 1, fmv, 0), na.rm = TRUE),
    
    cty_fmv_commercial = sum(ifelse(class %in% commercial_classes, fmv, 0), na.rm = TRUE),
    cty_fmv_comwithincent = sum(ifelse(class %in% commercial_classes & incent_prop == "Incentive", fmv, 0), na.rm = TRUE),
    cty_fmv_com_incent_inTIF= sum(ifelse(class %in% commercial_classes & incent_prop == "Incentive" & in_tif == 1, fmv, 0), na.rm = TRUE),
    
    cty_fmv_comandind = sum(ifelse(class %in% c(commercial_classes, industrial_classes) , fmv, 0), na.rm = TRUE),
    
    
    cty_levy = sum(final_tax_to_dist),
    cty_current_rate_avg = mean(tax_code_rate),
    cty_avg_C2_bill_noexe = mean(ifelse(between(class,200,299) & all_exemptions == 0, (final_tax_to_dist+ final_tax_to_tif), NA), na.rm=TRUE),
    cty_avg_C2_bill_withexe = mean(ifelse(between(class,200,299) & all_exemptions > 0, (final_tax_to_dist+ final_tax_to_tif), NA), na.rm=TRUE),
    cty_av_taxed = sum(taxed_av, na.rm = TRUE),
    cty_untaxable_value_av = sum(untaxable_value_av, na.rm=TRUE),
    cty_av = sum(av),
    cty_zero_bill = sum(zero_bill, na.rm=TRUE),
  ) %>% 
  mutate(
    cty_taxable_value_fmv = cty_fmv - cty_fmv_untaxable_value,
    cty_pct_fmv_untaxable = cty_fmv_untaxable_value / cty_fmv,
   # cty_pct_fmv_taxed = cty_fmv_taxed / cty_fmv,
    cty_pct_fmv_incentinTIF = cty_fmv_incent_inTIF / cty_fmv_incentive,
    cty_pct_fmv_incents_tif_increment = cty_fmv_incents_tif_increment / cty_fmv_incentive,
    
    cty_pct_av_taxed = cty_av_taxed / cty_av,
    cty_pct_av_untaxable = cty_untaxable_value_av/cty_av,
    
    cty_pct_incent_oftotalPC = cty_PC_incent / cty_PC,  # incentive pins / all PINs
    cty_pct_incent_ofcomPC = cty_PC_com_incent / cty_PC_commercial,  # incentive pins / commercial PINs
    cty_pct_incent_ofindPC = cty_PC_ind_incent / cty_PC_industrial,  # incentive pins / commercial PINs
    cty_pct_PC_incent_inTIF = cty_PC_incent_inTIF / cty_PC_incent        # count of incentive classes in TIFs / count of incentive Class PINs
    
  ) %>%  
  mutate(cty_pct_fmv_both_incent = cty_fmv_comwithincent / cty_fmv_comandind,
         cty_pct_PC_both_incent = cty_PC_incent / cty_PC_comandind,
         cty_pct_PC_both_incent_inTIF = cty_PC_incent_inTIF / cty_PC_incent,
         cty_pct_fmv_both_incent_inTIF = cty_fmv_incent_inTIF / cty_fmv_incentive,
  )
Code
cook_sums %>% 
  filter(year == params$year) |>
  select(cty_PC, cty_fmv_untaxable_value, cty_fmv, cty_pct_fmv_untaxable) %>%
  mutate(cty_pct_fmv_untaxable = scales::percent(cty_pct_fmv_untaxable, accuracy = 0.01)) %>%
  flextable() %>% 
  align(align = "right") %>%
  set_header_labels(cty_PC = 'PINs', 
                   # cty_projects = "Project IDs", 
                    cty_fmv_taxed = 'Taxed FMV', 
                    cty_fmv_untaxable_value = 'FMV not Taxed\nfor Levy',
                    cty_fmv = 'Total FMV', 

                    cty_pct_fmv_untaxable = 'Value not\nTaxed (%)'
  ) %>%   
  FitFlextableToPage()

PINs

FMV not Taxed
for Levy

Total FMV

Value not
Taxed (%)

1,865,016

8,043,509,737

605,862,898,192

1.33%

Table 8.1: FMV of PINs in Cook County Taxed FMV represents the property value that was actually taxed by local taxing jurisdictions(equal to the amount levied) but converted to FMV. We use the the portion of an individuals tax bill that does NOT go to a TIF to calculate the composite levy for taxing jursidictions.

TO DO Update text in captions automatically based on calculations. Don’t hard code in!

Code
tbl <-  cook_sums |>
  filter(year ==params$year) |>
  mutate(cty_pct_fmv_both_incent = cty_fmv_incentive / cty_fmv_comandind ,
         cty_pct_PC_both_incent = cty_PC_withincents / cty_PC_comandind         ) |>
  select(cty_fmv_comandind, #cty_fmv, 
          cty_pct_fmv_both_incent, 
         cty_pct_fmv_incentinTIF,
         cty_pct_PC_both_incent, cty_PC_comandind, cty_PC_incents_inTIFs, #cty_pct_PC_both_incent_inTIF, 
         cty_pct_fmv_incents_tif_increment) %>%
 mutate(across(contains("pct_"), scales::percent, accuracy = .01))

tbl %>%
  flextable() %>% 
  align(align = "right") %>%
    set_header_labels(
                          cty_fmv_comandind = 'Com. & Ind. FMV',
                        #  cty_fmv = 'Total FMV in Cook',
                    cty_pct_fmv_both_incent = '% of Com. & Ind. FMV  w/ Incent.',
                    cty_pct_fmv_incentinTIF = '% of Com. & Ind. FMV  w/ Incent. in TIF',
  cty_pct_fmv_incents_tif_increment = '% of Com. & Ind. FMV in TIF Increment',

                          cty_PC_comandind = 'PIN Count',
                      cty_PC_incents_inTIFs = "Incent. PINs in TIF",
                    cty_pct_PC_both_incent = '% of Com. & Ind. PINs w/ Incent.',
                    cty_pct_PC_both_incent_inTIF = '% of Incent. PINs in TIF'
  ) %>%
  FitFlextableToPage()

Com. & Ind. FMV

% of Com. & Ind. FMV w/ Incent.

% of Com. & Ind. FMV w/ Incent. in TIF

% of Com. & Ind. PINs w/ Incent.

PIN Count

Incent. PINs in TIF

% of Com. & Ind. FMV in TIF Increment

113,470,082,097

11.25%

41.52%

4.55%

96,275

1,924

26.77%

Table 8.2: Commercial and Industrial PINs in Cook County

11.25% of industrial and commercial PINs (aka "revenue producing PINs") FMV has an incentive classification (4.55% when using PIN counts). Of the PINs that have incentive classification, 41.52% of the FMV is located within a TIF ( NULL 43.9% when using PIN counts).

26.77% is in TIF Increment.

Code
#table_cook %>% 
  
tbl <- cook_sums |>
  filter(year == params$year) |>
  mutate(cty_pct_fmv_com_incent = cty_fmv_comwithincent / cty_fmv_commercial,#) |>
         cty_pct_fmv_com_incent_inTIF = cty_fmv_com_incent_inTIF / cty_fmv_comwithincent,
         
         cty_pct_PC_com_incent_inTIF = cty_PC_com_incent_inTIF / cty_PC_com_incent) %>%
  
  select(cty_PC_commercial, cty_PC_com_incent, cty_pct_incent_ofcomPC, 
         cty_pct_PC_com_incent_inTIF, cty_fmv_commercial, cty_pct_incent_ofcomPC, 
         cty_pct_fmv_com_incent, cty_pct_fmv_com_incent_inTIF) %>%
  
  mutate(across(contains("pct_"), scales::percent, accuracy = .01))

tbl %>%
  flextable() %>% 
    align(align = "right") %>%
  set_header_labels(cty_fmv_commercial = 'Commercial FMV',
                    cty_PC_commercial = 'Commercial Pin Count', 
                    cty_PC_com_incent = 'Com. PIN Count w/ Incent.',
                    cty_pct_incent_ofcomPC = 'Com. PINs w/ Incent.',
                    cty_pct_fmv_com_incent = '% of Com. FMV  w/ Incent.', 
                    
                    cty_pct_fmv_com_incent_inTIF = '% of Com. FMV  w/ Incent. in TIF', 
                    cty_PC_com_incent_inTIF = "Com. Incent. PINs in TIF", 
                    cty_pct_PC_com_incent = '% of Com. PINs w/ Incent.',
                    cty_pct_PC_com_incent_inTIF = '% of Incent. PINs in TIF'
  ) %>%   FitFlextableToPage()

Commercial Pin Count

Com. PIN Count w/ Incent.

Com. PINs w/ Incent.

% of Incent. PINs in TIF

Commercial FMV

% of Com. FMV w/ Incent.

% of Com. FMV w/ Incent. in TIF

70,749

883

1.25%

40.54%

88,748,261,442

4.15%

55.89%

Table 8.3: Commercial PINs in Cook County

4.15% of industrial and commercial PINs (aka "revenue producing PINs") FMV has an incentive classification (1.25% when using PIN counts). Of the PINs that have incentive classification, 55.89% of the FMV is located within a TIF ( 40.54% when using PIN counts).

NULL is in TIF Increment.

Code
cook_sums |>
  filter(year == params$year) |>
  mutate(cty_pct_fmv_ind_incent = cty_fmv_indwithincent / cty_fmv_industrial,
         cty_pct_fmv_ind_incent_inTIF = cty_fmv_ind_incent_inTIF / cty_fmv_indwithincent,
         
         cty_pct_PC_ind_incent_inTIF = cty_PC_ind_incent_inTIF / cty_PC_ind_incent) %>%
  
  select(cty_PC_industrial, cty_PC_ind_incent, cty_PC_ind_incent_inTIF, 
         cty_pct_incent_ofindPC, cty_pct_fmv_ind_incent_inTIF, cty_pct_PC_ind_incent_inTIF,
         
         cty_fmv_industrial, cty_pct_fmv_ind_incent,  
  ) %>%
  mutate(across(contains("pct_"), scales::percent, accuracy = .01)) %>%
  flextable() %>% 
  align(align = "right") %>% 
  set_header_labels(cty_fmv_industrial = 'Industrial FMV',
                    cty_PC_industrial = 'Industrial Pin Count', 
                    cty_PC_ind_incent = 'Ind. PIN Count w/ Incent.',
                    cty_pct_incent_ofindPC = 'Ind. PINs w/ Incent.',
                    cty_pct_fmv_ind_incent = '% of Ind. FMV  w/ Incent.', 
                    
                    cty_pct_fmv_ind_incent_inTIF = '% of Ind. FMV  w/ Incent. in TIF', 
                    cty_PC_ind_incent_inTIF = "Ind. Incent. PINs in TIF", 
                    cty_pct_PC_ind_incent = '% of Com. PINs w/ Incent.',
                    cty_pct_PC_ind_incent_inTIF = '% of Incent. PINs in TIF'
  ) %>% 
  FitFlextableToPage()

Industrial Pin Count

Ind. PIN Count w/ Incent.

Ind. Incent. PINs in TIF

Ind. PINs w/ Incent.

% of Ind. FMV w/ Incent. in TIF

% of Incent. PINs in TIF

Industrial FMV

% of Ind. FMV w/ Incent.

25,526

3,500

1,566

13.71%

35.70%

44.74%

24,721,820,655

36.74%

Table 8.4: Industrial PINs in Cook County

36.7% of industrial PINs FMV has an incentive classification (13.7% when using PIN counts). Of the Industrial PINs that have incentive classification, 35.7% of the FMV is located within a TIF (44% when using PIN counts).

NULL of industrial and commercial PINs (aka "revenue producing PINs") FMV has an incentive classification (NULL when using PIN counts). Of the PINs that have incentive classification, NULL of the FMV is located within a TIF ( NULL when using PIN counts).

Code
cook_sums |>
  filter(year == params$year) |>
  select(cty_fmv, cty_fmv_tif_increment, cty_fmv_exemptions, cty_fmv_abatements, 
         cty_pct_fmv_untaxable ) %>%
  mutate(across(contains("pct_"), scales::percent, accuracy = .01)) %>%
  flextable() %>% 
    align(align = "right") %>%  set_header_labels(
                   cty_fmv = 'Total FMV', 
                    cty_fmv_tif_increment = 'TIF Increment FMV' ,
                    cty_fmv_exemptions = 'Exempt Value: Exemptions',
                    cty_fmv_abatements = 'Exempt Value: Abatements',
                    cty_fmv_untaxable_value = 'Value not Taxable \nfor Levy',
                    cty_pct_fmv_untaxable = 'County FMV not Taxed (%)') %>%
  FitFlextableToPage()

Total FMV

TIF Increment FMV

Exempt Value: Exemptions

Exempt Value: Abatements

County FMV not Taxed (%)

605,862,898,192

46,298,950,535

53,244,174,220

6,676,957

1.33%

Table 8.5: Untaxable FMV in Cook County.
Code
cook_sums |>
  filter(year == params$year) |>  select(cty_av, cty_av_taxed, cty_untaxable_value_av, cty_pct_av_taxed, cty_pct_av_untaxable ) %>%
  mutate(across(contains("pct_"), scales::percent, accuracy = .01)) %>%
  flextable() %>% 
    align(align = "right") %>%  set_header_labels(
                   cty_av = 'Total AV', 
                    cty_av_taxed = 'Taxed AV' ,
                    cty_untaxable_value_av = 'AV Not Taxed',
                    cty_pct_av_taxed = '% Taxed',
                    cty_pct_av_untaxable = '% Not Taxed') %>%
   FitFlextableToPage()

Total AV

Taxed AV

AV Not Taxed

% Taxed

% Not Taxed

75,674,322,433

9,290,818,071

8,043,509,737

12.28%

10.63%

Table 8.6: Untaxable AV in Cook County. Taxed AV represents the property value that was actually taxed by local taxing jurisdictions.
Code
cook_sums |>
  filter(year == params$year) |>
  select(cty_fmv, cty_fmv_inTIF, cty_fmv_tif_increment, 
         cty_fmv_incentive, cty_fmv_incents_inTIFs, cty_fmv_incents_tif_increment) %>%
  flextable() %>% 
  set_header_labels(
                    cty_fmv = 'Total FMV', 
                    cty_fmv_inTIF = 'FMV in TIFs',
                    cty_fmv_tif_increment = 'TIF Increment FMV' ,
                    cty_fmv_incents_inTIFs = 'FMV from Incent. Class in TIF',
                    cty_fmv_incentive = "FMV with Incent.Class.", 
                    cty_fmv_incents_tif_increment = 'FMV with Incent. Class. in TIF Increment') %>%   
  FitFlextableToPage()

Total FMV

FMV in TIFs

TIF Increment FMV

FMV with Incent.Class.

FMV from Incent. Class in TIF

FMV with Incent. Class. in TIF Increment

605,862,898,192

111,514,487,733

46,298,950,535

12,764,675,273

5,300,523,817

3,417,075,090

Table 8.7: FMV of properties with incentive classifications and TIF increment. Value in TIFs, value within the TIF that can be taxed by local taxing jurisdictions, value of properties that have reduced levels of assessments from incentive classifications, and the value that is both in a TIF and has a reduced LOA.

Taxed value is the amount of value that was actually taxed in order to pay for taxing agencies levies. It includes frozen EAV within an area + taxable EAV for residential properties net exemptions and abatements. It also includes the equalized assessed value of incentive properties at their current, lower assessment ratios. final_tax_to_dist is used to calculate the amount that was collected by local government agencies and then divided by the tax rate to calculate the amount of value that was taxed, or the taxable equalized assessed value (TEAV).

The Taxed Value, when converted to the Fair Market Value (FMV) represents the amount of value that was taxed out of the full FMV available in Cook County.

Untaxable EAV includes homeowner exemptions for 200 level properties, abatements for other property class types, EAV in the TIF increment, and EAV that has been reduced due to incentive classifications.

Code
cty_MC_table <- pin_data %>%
  group_by(class_group) %>%
  summarize(
    cty_MC_PC = n(),
    cty_MC_projects = n_distinct(both_ids), # mostly for industrial and commercial properties
    cty_MC_fmv_incentive = sum(ifelse(incent_prop == 1, fmv, 0), na.rm = TRUE),
    # cty_MC_fmv_taxed =  sum(taxed_fmv, na.rm=TRUE),
    cty_MC_av_taxed  = sum(taxed_av, na.rm=TRUE),
    cty_MC_fmv_incent_inTIF = sum(ifelse(incent_prop == 1 & in_tif == 1, fmv, 0), na.rm = TRUE),
    cty_MC_fmv_inTIF = sum(fmv_inTIF, na.rm=TRUE),
    cty_MC_fmv_tif_increment = sum(fmv_tif_increment, na.rm=TRUE),
    cty_MC_fmv_untaxable_value = sum(untaxable_value_fmv , na.rm=TRUE),
    cty_MC_fmv = sum(fmv, na.rm=TRUE),
    cty_MC_fmv_exemptions = sum(all_exemptions/eq_factor/loa, na.rm=TRUE),
    cty_MC_fmv_abatements = sum(abatements/eq_factor/loa, na.rm=TRUE),
    cty_MC_cty_zero_bill = sum(zero_bill, na.rm=TRUE),
    cty_MC_fmv_residential = sum(ifelse(res_prop == 1, fmv, 0), na.rm = TRUE),
    cty_MC_fmv_industrial = sum(ifelse(class %in% industrial_classes, fmv, 0), na.rm = TRUE),
    cty_MC_fmv_commercial = sum(ifelse(class %in% commercial_classes, fmv, 0), na.rm = TRUE),
    cty_MC_levy_paid = sum(final_tax_to_dist),
    cty_MC_current_rate_avg = mean(tax_code_rate),
    
    cty_MC_avg_C2_bill_noexe = mean(ifelse(res_prop == 1 & exe_total_adj == 0, (final_tax_to_dist+ final_tax_to_tif), NA), na.rm=TRUE),
    cty_MC_avg_C2_bill_withexe = mean(ifelse(res_prop == 1 & exe_total_adj > 0, (final_tax_to_dist+ final_tax_to_tif), NA), na.rm=TRUE),
  ) %>%
  mutate( cty_fmv = sum(cty_MC_fmv),
          pct_cty_MC_fmv_untaxable = cty_MC_fmv_untaxable_value / cty_MC_fmv,
          # pct_fmv_taxed = cty_MC_fmv_taxed / cty_fmv,
          pct_MC_levy_paid = cty_MC_levy_paid / sum(cty_MC_levy_paid) )


cty_MC_table %>%
  select(-c(cty_MC_avg_C2_bill_noexe, cty_MC_avg_C2_bill_withexe, cty_MC_fmv_residential, cty_MC_fmv_industrial, cty_MC_fmv_commercial, cty_fmv, #cty_MC_fmv_incent_inTIF
            )
         ) %>%
  select(
    "Property Type" = class_group, 
    "Homeowner Exempt FMV"= cty_MC_fmv_exemptions,
    "Abated FMV" = cty_MC_fmv_abatements,
    "$0 Bill Count" = cty_MC_cty_zero_bill,
    "$ Levy Paid" = cty_MC_levy_paid,
    "% of Levy Paid" =  pct_MC_levy_paid, 
    "FMV in Major Class" =  cty_MC_fmv,
    "Taxed AV" = cty_MC_av_taxed,
    "Project Count" = cty_MC_projects,
    "Avg Composite Tax Rate" = cty_MC_current_rate_avg, everything()) %>%
  mutate(across(contains("pct_"), scales::percent, accuracy = .01)) %>%
  flextable() %>% 
  align(align = "right") %>%
  set_header_labels(
    cty_MC_PC = 'PINs',# projects = "Project IDs", 
    cty_MC_fmv_taxed = 'Taxed FMV', 
    cty_MC_fmv_untaxable_value = 'Value not Taxable for Levy', 
    cty_MC_fmv_incentive = "FMV with Incent.Class.", 
    cty_MC_fmv_inTIF = 'FMV in TIFs', 
    cty_MC_fmv_tif_increment = 'TIF Increment FMV',
    pct_cty_MC_fmv_untaxable = 'Value not Taxed (%)', 
    cty_MC_incentive_fmv = 'FMV with Incent. Classification',
    cty_MC_fmv_incent_inTIF = 'FMV with Incent. Class. in TIFs' )

Property Type

Homeowner Exempt FMV

Abated FMV

$0 Bill Count

$ Levy Paid

% of Levy Paid

FMV in Major Class

Taxed AV

Project Count

Avg Composite Tax Rate

PINs

FMV with Incent.Class.

FMV with Incent. Class. in TIFs

FMV in TIFs

TIF Increment FMV

Value not Taxable for Levy

Value not Taxed (%)

0

0.000

0.000

96,414

0

0.0000000000

0

0

3,493

0.11121449

96,414

0

0

0

0

0.0000

1

2,821.767

0.000

4,614

118,922,310

0.0068244876

4,119,217,300

411,921,730

2,112

0.11516293

62,203

0

0

1,807,866,180

0

282.1767

0.00%

2

50,922,039,747.580

43,438.109

32,534

9,681,516,185

0.5555844566

433,919,792,100

38,303,780,666

1,739

0.10083604

1,557,021

0

0

50,558,654,740

0

5,092,237,343.4347

1.17%

3

13,197,715.224

0.000

33

1,043,339,740

0.0598731987

44,868,268,310

4,485,507,059

18,860

0.09301733

19,901

0

0

13,835,801,550

0

1,319,771.5224

0.00%

4

0.000

0.000

6

24,453,599

0.0014032967

518,223,535

103,644,707

275

0.10475544

443

0

0

273,428,190

0

0.0000

0.00%

5A

6,679,429.490

4,365,108.595

500

5,044,519,617

0.2894853076

84,326,492,400

21,078,861,965

35,706

0.10116213

68,836

0

0

32,580,106,600

0

2,761,134.5213

0.00%

5B

110,271.232

2,050,659.096

20

1,079,823,530

0.0619668612

15,481,344,628

3,869,795,924

11,125

0.10205659

21,728

0

0

6,585,653,364

0

540,232.5820

0.00%

6

0.000

0.000

0

246,645,401

0.0141540177

8,018,067,050

801,808,331

1,321

0.11569211

2,271

8,018,067,050

2,680,092,220

2,680,092,220

0

1,202,708,431.5000

15.00%

7A

0.000

213,041.694

0

11,613,847

0.0006664734

487,518,155

49,531,252

42

0.10213453

64

487,518,155

373,109,385

373,109,385

0

72,316,330.6653

14.83%

7B

0.000

4,709.786

0

58,019,487

0.0033295121

2,706,249,840

270,906,422

101

0.08866402

254

2,706,249,840

1,482,408,160

1,482,408,160

0

405,655,331.5107

14.99%

8A

0.000

0.000

0

29,816,029

0.0017110256

474,736,738

51,100,341

362

0.21868331

544

474,736,738

190,858,782

190,858,782

0

67,590,468.5833

14.24%

8B

0.000

0.000

0

63,072,048

0.0036194589

947,391,120

94,739,112

289

0.25691671

1,160

947,391,120

510,068,560

510,068,560

0

142,108,668.0000

15.00%

9

0.000

0.000

4

24,080,815

0.0013819040

996,050,910

99,605,091

330

0.09042116

954

0

0

431,176,430

0

0.0000

0.00%

The Fair Market Value (FMV) is also called the Market Value for Assessment Purposes and can be calculated from the av / loa, or the Assessed Value divided by the Level of Assessment. However, the values used for the level of assessment are an approximation for incentive properties since we do not have the PIN level assessment ratios.

Code
library(tidyverse)

options(scipen = 999)

# Trends in Incentivized FMV as a percent of the base over time

## Data prep

muni_MC <- read_csv("../Output/ptaxsim_muni_class_summaries_2006to2023.csv") %>%
  select(year, clean_name, class, av = muni_c_av)

class_dict <- read_csv("../Necessary_Files/class_dict_expanded.csv") %>%
  select(class = class_code, class_1dig, assess_ratio, incent_prop, land_use=Alea_cat, major_class_code)

muni_MC <- muni_MC %>% 
  left_join(class_dict, by = c("class")) %>% 
  filter(class !=0) # drop exempt property types with 0 taxable value

#class_8_munis <- read_csv("./Necessary_Files/datarequests_Class8Munis.csv")
class_8_munis <- read_csv("../Output/datarequests_Class8Munis.csv")

# changed from as.list to as.character
class_8_munis <- as.character(class_8_munis$clean_name)



# class 8 munis - at the year-class level
class_8_df <- # left_join(muni_MC, class_dict, by = "class") %>%
  muni_MC %>%
  filter(clean_name %in% class_8_munis) %>%
  filter(av != 0) %>%
  mutate(FMV = av/assess_ratio) %>%
  group_by(year) %>%   
  mutate(year_tb_tot = sum(FMV)) %>%           # tax base for all class 8 munis together, per year
  ungroup() %>%
  filter(land_use %in% c("Industrial", "Commercial")) %>%      ## drops all non-industrial and non-commercial classes to calculate the rest of the totals
  group_by(year) %>%
  mutate(year_ind_comm_FMV = sum(FMV)) %>%    #  total commercial and industrial FMV for all class 8 munis together, per year
  ungroup() %>%
  group_by(year, clean_name) %>%
  mutate(muni_year_ind_comm_FMV = sum(FMV)) %>%   # calculates total FMV in each munis  each year
  ungroup() %>%
  group_by(year, land_use) %>%
  mutate(cat_year_FMV = sum(FMV)) %>%    # calculates FMV within each commercial vs industrial category for each year
  ungroup() %>%
  group_by(year, clean_name, class_1dig) %>%   # total fmv in class 5, 6, 7, and 8 per muni
  mutate(year_muni_class_FMV = sum(FMV))

## Added this for cook level totals:
class_8_df_outofCook <- 
  muni_MC %>%
 # filter(clean_name %in% class_8_munis) %>% ## keep all munis, use for cook county totals.
  filter(av != 0) %>%
  mutate(FMV = av/assess_ratio) %>%
  group_by(year) %>%   
  mutate(year_tb_tot = sum(FMV)) %>%           # tax base for all class 8 munis together, per year
  ungroup() %>%
  filter(land_use %in% c("Industrial", "Commercial")) %>%      ## drops all non-industrial and non-commercial classes to calculate the rest of the totals
  group_by(year) %>%
  mutate(year_ind_comm_FMV = sum(FMV)) %>%    #  total commercial and industrial FMV for all class 8 munis together, per year
  ungroup() %>%
  group_by(year, clean_name) %>%
  mutate(muni_year_ind_comm_FMV = sum(FMV)) %>%   # calculates total FMV in each munis  each year
  ungroup() %>%
  group_by(year, land_use) %>%
  mutate(cat_year_FMV = sum(FMV)) %>%    # calculates FMV within each commercial vs industrial category for each year
  ungroup() %>%
  group_by(year, clean_name, class_1dig) %>%   # total fmv in class 5, 6, 7, and 8 per muni
  mutate(year_muni_class_FMV = sum(FMV))


## Class 8 Townships Graph -------------------
 ## Alea Version: 
ggplot() +
  geom_line(data = class_8_df %>%
              group_by(year) %>%
              summarize(ind_comm_perc = mean(year_ind_comm_FMV/year_tb_tot)), 
            aes(x = year, y = ind_comm_perc, color =  "Commercial+Industrial"), lwd = 1) +  
  
  # industrial fmv
  geom_line(data = class_8_df %>%               
              filter(land_use == "Industrial") %>%
              group_by(year) %>%
              # needed na.rm=TRUE, otherwise it didn't work. perc_industrial was not being calculated without it.
              summarize(perc_industrial =  sum(FMV/year_tb_tot, na.rm=TRUE)),   ## added this part
            aes(x = year, y = perc_industrial, color = "Industrial"), lwd = 1) +
  
  # commercial fmv
  geom_line(data = class_8_df %>%              
              filter(land_use == "Commercial") %>%
              group_by(year) %>%
              summarize(perc_commercial =  sum(FMV/year_tb_tot, na.rm=TRUE)),   ## added this part
            aes(x = year, y = perc_commercial, color = "Commercial"), lwd = 1) +
  geom_line(data = class_8_df %>%
              filter(incent_prop == "Incentive") %>%
              group_by(year) %>%
              summarise(incent_perc = sum(FMV)/year_tb_tot),
            aes(x = year, y = incent_perc, color = "Incentive Classes"), lwd = 1 ) +
  geom_line(data = class_8_df %>%               # threw error here, missing x and y in aes()
              filter(class_1dig == 8) %>% 
              group_by(year) %>%
              summarize(perc_8 =  sum(FMV/year_tb_tot)),   ## added this part
            aes(x = year, y = perc_8, color = "Class 8"), lwd = 1) +        # was missing a + sign here
  theme_classic() +
  scale_x_continuous(name = "", breaks = seq(2006, 2022, by = 3), limits = c(2006, 2022), expand = c(0,0)) +
  scale_y_continuous(name = "Percent of FMV", labels = scales::percent_format(), limits = c(0, 0.20),
                     breaks = seq(0, 0.5, by = 0.05), expand = c(0,0))  +
 scale_color_manual(name = "", values = c("Commercial+Industrial" = "black", "Industrial" = "gray70", "Commercial" = "gray50",  "Incentive Classes" = "orange",  "Class 8" = "red" )) +
  theme(legend.position = "bottom") + 
  labs(title = "Property in the Class 8 Townships") + 
  guides(color = guide_legend(nrow=2, byrow = TRUE))
## Percentage out of Cook County ---------------------
 
## Alea Version for Cook Level: 
ggplot() +
  # Commercial + Industrial FMV in cook
  geom_line(data = class_8_df_outofCook %>%
              group_by(year) %>%  #didn't group by year before?
              summarize(ind_comm_perc = mean(year_ind_comm_FMV/year_tb_tot)), 
            aes(x = year, y = ind_comm_perc, color =  "Commercial+Industrial"), lwd = 1) +  
  
  # incentive class properties in cook
  geom_line(data = class_8_df_outofCook %>%
              filter(incent_prop == "Incentive") %>%
              group_by(year) %>%
              summarise(incent_perc = sum(FMV/year_tb_tot)),
            aes(x = year, y = incent_perc, color = "Incentive Classes"), lwd = 1 ) +
 
  # FMV with class 8 property class in cook county
   geom_line(data = class_8_df_outofCook %>%               # threw error here, missing x and y in aes()
              filter(class_1dig == 8) %>% 
              group_by(year) %>%
              summarize(perc_8 =  sum(FMV/year_tb_tot)),   ## added this part
            aes(x = year, y = perc_8, color = "Class 8"), lwd = 1) +        # was missing a + sign here
 
  # industrial fmv in cook county
  geom_line(data = class_8_df_outofCook %>%               # threw error here, missing x and y in aes()
              filter(land_use == "Industrial") %>%
              group_by(year) %>%
              # needed na.rm=TRUE, otherwise it didn't work. perc_industrial was not being calculated without it.
              summarize(perc_industrial =  sum(FMV/year_tb_tot, na.rm=TRUE)),   ## added this part
            aes(x = year, y = perc_industrial, color = "Industrial"), lwd = 1) +

  # commercial fmv in cook county
geom_line(data = class_8_df_outofCook %>%               # threw error here, missing x and y in aes()
            filter(land_use == "Commercial") %>%
            group_by(year) %>%
            summarize(perc_commercial =  sum(FMV/year_tb_tot, na.rm=TRUE)),   ## added this part
          aes(x = year, y = perc_commercial, color = "Commercial"), lwd = 1) +

  # make it pretty:
   theme_classic() +
  scale_x_continuous(name = "", breaks = seq(2006, 2022, by = 3), limits = c(2006, 2022), expand = c(0,0)) +
  scale_y_continuous(name = "Percent of County FMV", labels = scales::percent_format(),  limits = c(0, 0.20), 
                     breaks = seq(0, 0.5, by = 0.05), expand = c(0,0))  +
  scale_color_manual(name = "", values = c("Commercial+Industrial" = "black", "Industrial" = "gray80", "Commercial" = "gray40", "Incentive Classes" = "orange", "Class 8" =  "red")) +
  theme(legend.position = "bottom") +
  labs(title= "Cook County Commercial & Industrial FMV") + guides(color = guide_legend(nrow=2, byrow = TRUE))
## Newest Addition for April 30th Presentation --------------------
ggplot() +
  # incentive class properties in cook
  geom_line(data = class_8_df_outofCook %>%
              filter(incent_prop == "Incentive") %>%
              group_by(year) %>%
              summarise(incent_perc = sum(FMV/year_ind_comm_FMV)),
            aes(x = year, y = incent_perc, color = "Incentive Classes"), lwd = 1 ) +
  
  # FMV with class 8 property class in cook county
  geom_line(data = class_8_df_outofCook %>%               
              filter(class_1dig == 8) %>% 
              group_by(year) %>%
              summarize(perc_8 =  sum(FMV/year_ind_comm_FMV)),   
            aes(x = year, y = perc_8, color = "Class 8"), lwd = 1) +       
  # make it pretty:
  theme_classic() +
  scale_x_continuous(name = "", breaks = seq(2006, 2022, by = 3), limits = c(2006, 2022), expand = c(0,0)) +
  scale_y_continuous(name = "Percent of Com+Ind FMV", labels = scales::percent_format(), limits = c(0, 0.25), 
                     breaks = seq(0, 0.5, by = 0.05), expand = c(0,0))  +
  scale_color_manual(name = "", values = c("Industrial" = "gray80", "Commercial" = "gray40", "Incentive Classes" = "orange", "Class 8" =  "red")) +
  theme(legend.position = "bottom") +
  labs(title= "Cook County", subtitle =  "Share of Commercial & Industrial FMV with Incentive Classification") + guides(color = guide_legend(nrow=2, byrow = TRUE))
## Newest Addition for April 30th Presentation --------------------
ggplot() +
  # incentive class properties in cook
  geom_line(data = class_8_df_outofCook %>%
              filter(incent_prop == "Incentive") %>%
              group_by(year) %>%
              summarise(incent_perc = sum(FMV/year_ind_comm_FMV)),
            aes(x = year, y = incent_perc, color = "Incentive Classes"), lwd = 1 ) +
  # 
  # # FMV with class 8 property class in cook county
  # geom_line(data = class_8_df_outofCook %>%               
  #             filter(class_1dig == 8) %>% 
  #             group_by(year) %>%
  #             summarize(perc_8 =  sum(FMV/year_ind_comm_FMV)),   
  #           aes(x = year, y = perc_8, color = "Class 8"), lwd = 1) +       
  # make it pretty:
  theme_classic() +
  scale_x_continuous(name = "", breaks = seq(2006, 2022, by = 3), limits = c(2006, 2022), expand = c(0,0)) +
  scale_y_continuous(name = "Percent of Com+Ind FMV", labels = scales::percent_format(), limits = c(0, 0.25), 
                     breaks = seq(0, 0.5, by = 0.05), expand = c(0,0))  +
  scale_color_manual(name = "", values = c("Industrial" = "gray80", "Commercial" = "gray40", "Incentive Classes" = "orange")) +
  theme(legend.position = "bottom") +
  labs(title= "Cook County", subtitle =  "Share of Commercial & Industrial FMV with Incentive Classification") + guides(color = guide_legend(nrow=2, byrow = TRUE))
 ggplot() +
   geom_line(data = class_8_df %>%
               filter(incent_prop == "Incentive") %>%
               group_by(year) %>%
               summarise(incent_perc = sum(FMV/year_ind_comm_FMV)),
             aes(x = year, y = incent_perc, color = "All Incentive Classes"), lwd = 1 ) +
      geom_line(data = class_8_df %>%               
               filter(class_1dig == 8) %>% 
               group_by(year) %>%
               summarize(perc_8 =  sum(FMV/year_ind_comm_FMV)), 
             aes(x = year, y = perc_8, color = "Class 8"), lwd = 1) +        
   # make it pretty:
   theme_classic() +
   scale_x_continuous(name = "", breaks = seq(2006, 2022, by = 3), limits = c(2006, 2022), expand = c(0,0)) +
   scale_y_continuous(name = "Percent of Com&Ind FMV", labels = scales::percent_format(), # limits = c(0, 0.25), 
                      breaks = seq(0, 0.5, by = 0.05), expand = c(0,0))  +
   scale_color_manual(name = "", values = c("Commercial+Industrial" = "black", "Industrial" = "gray80", "Commercial" = "gray40", "All Incentive Classes" = "orange", "Class 8" =  "red")) +
   theme(legend.position = "bottom") +
   labs(title= "Class 8 Townships", subtitle =  "Share of Commercial & Industrial FMV with Incentive Classification") + guides(color = guide_legend(nrow=2, byrow = TRUE))

Municipality Level Stats

Ignore stats for these Municipalities. Simple rounding errors may cause bizarre results for rate changes & other calculations. These municipalities are dropped from summary tables in this website but are included in exported files.

  • Frankfort has 1 PIN in Cook County
  • East Dundee has 2
  • Homer Glen has 3
  • University Park has 4
  • Oak Brook, Deer Park, Deerfield, & Bensenville each have less than 75 PINs in Cook County, IL

Frequency of Incentives

Fair Market Value of Incentive PINs

Code
landuse_incentshares <- pin_data %>% 
  filter(land_use != "Land") %>%
  group_by(clean_name, land_use) %>% 
  summarize(pin_count = n(),
            incent_PC = sum(ifelse(class >=600 & class <=900, 1, 0), na.rm=TRUE),
            fmv_incentive = sum(ifelse(class >=600 & class <=900, fmv, 0), na.rm = TRUE),
            project_count = n_distinct(keypin),
            fmv_group = sum(fmv, na.rm=TRUE),
            #   av=sum(av)
  ) %>%
  mutate(
    fmv_incentive = ifelse(fmv_incentive == 0, NA, fmv_incentive),
    pct_incent = fmv_incentive / fmv_group,
    pct_incent = ifelse(is.na(pct_incent), 0, pct_incent),
pct_incent = scales::percent(pct_incent)
)  

indust_top10 <- landuse_incentshares %>%
  select(clean_name, land_use, fmv_incentive, incent_PC) %>% 
  filter(land_use == "Industrial") %>%
  arrange(desc(fmv_incentive)) %>%
  head(10) %>% 
  select(-land_use)

indust_top10 %>%
  flextable() %>% 
  set_header_labels(clean_name = "Municipality", incent_PC = '# of Incent. PINs',
fmv_incentive = "FMV from Incentive\nClass Properties"
) %>%
  set_table_properties( layout = "autofit", width = .75)

Municipality

FMV from Incentive
Class Properties

# of Incent. PINs

Chicago

1,567,026,390

488

Elk Grove Village

927,465,940

246

Franklin Park

659,839,060

92

North Lake

605,255,790

19

Bedford Park

519,319,250

151

Melrose Park

350,581,750

92

Des Plaines

338,782,660

56

Mc Cook

294,324,820

47

Matteson

288,028,380

6

Markham

269,549,800

641

Table 9.1: Top 10 Municipalities using Industrial Incentives
Code
commerc_top10 <- landuse_incentshares %>%
  select(clean_name, land_use, fmv_incentive, incent_PC) %>% 
  filter(land_use == "Commercial") %>%
  arrange(desc(fmv_incentive)) %>%
  head(10) %>% 
  select(-land_use)
  
commerc_top10 %>%
  flextable() %>% 
#align(align = "right", j = 2:4) %>%
  set_header_labels(clean_name = "Municipality", 
                    incent_PC = '# of Incent. PINs', 
                    fmv_incentive = "FMV from Incentive\nClass Properties"
                    ) %>%
  set_table_properties( layout = "autofit", width = .75)

Municipality

FMV from Incentive
Class Properties

# of Incent. PINs

Chicago

2,861,809,300

190

Glenview

72,809,460

3

Matteson

57,273,632

21

Evergreen Park

46,413,180

6

Calumet City

40,095,923

65

South Holland

36,050,273

47

Orland Park

32,763,720

10

Lansing

30,327,995

27

Chicago Heights

28,510,433

58

Homewood

25,847,943

23

Table 9.2: Top 10 Municipalities using Commercial Incentives

Share of Total FMV with Incentive Classification

Combined Industrial and Commercial FMV with incentive classification divided by total FMV in municipality. Not included in a table in the report.

One way of showing areas that have reduced their tax base significantly through the use of incentive classifications.

Code
table_muni_percentages <- muni_sums %>%   
  filter(year == params$year)|>
  filter(!clean_name  %in% c("Frankfort", "Homer Glen",  "Oak Brook", "East Dundee", "University Park",  "Bensenville", "Hinsdale", "Roselle", "Deer Park", "Deerfield"))

# table_muni_percentages <- munilevel %>%   
# filter(!clean_name  %in% c("Frankfort", "Homer Glen",  "Oak Brook", "East Dundee", "University Park",  "Bensenville", "Hinsdale", "Roselle", "Deer Park", "Deerfield"))

cross_county_line <- c("Frankfort", "Homer Glen",  "Oak Brook", "East Dundee", "University Park",  "Bensenville", "Hinsdale", "Roselle", "Deer Park", "Deerfield")
Code
# table_muni_percentages %>%
#   select(clean_name, pct_fmv_w_incentclass) |> 
#   arrange(desc(pct_fmv_w_incentclass)) %>%
#     slice(c(1:10, 56:65, 110:119)) %>%
# 
#   #slice(c(1:10, 67:76, 116:125)) %>%
#   mutate(pct_fmv_w_incentclass = scales::percent(pct_fmv_w_incentclass, digits =1)) %>%
#   
#   flextable() %>% 
#   border_remove() %>%
#   hline_top() %>%
#   hline(i = c(10,20)) %>%
#   
#   set_header_labels(clean_name = "Municipality", pct_fmv_w_incentclass = "% FMV with\nIncent. Class.") %>%
# add_header_row(values = c("County Wide", "3.22%"), top = FALSE) %>%
#   align(j = 2, align = "right") %>%
# 
#   set_table_properties( layout = "autofit")



table_muni_percentages %>%
  select(clean_name, pct_fmv_w_incentclass) |> 
  arrange(desc(pct_fmv_w_incentclass)) %>%
  slice(c(1:5, 69:73, 121:125)) %>%
  #  slice(c(1:5, 58:62, 115:119)) %>%

  mutate(pct_fmv_w_incentclass = scales::percent(pct_fmv_w_incentclass, digits = 2)) %>%
  flextable() %>% 
  border_remove() %>%
  hline_top() %>%
  hline(i = c(5,10)) %>%

  set_header_labels(clean_name = "Municipality", pct_fmv_w_incentclass = "% FMV") %>%
  align(j = 2, align = "right") %>%
align(j=2, align = "right", part = "header") %>%
set_table_properties( layout = "autofit")

Municipality

% FMV

Mc Cook

70.20%

Bedford Park

47.70%

Markham

40.50%

North Lake

39.20%

Hodgkins

35.10%

Hoffman Estates

0.90%

Richton Park

0.90%

Robbins

0.90%

Burr Ridge

0.80%

Flossmoor

0.80%

Western Springs

0.00%

Wilmette

0.00%

Winnetka

0.00%

Worth

0.00%

Table 9.3: Municipalities with the largest share of FMV property with incentive classification.
Code
library(sf)
library(ggpattern)

no_incentives <-  pin_data %>% 
 # filter(between(class, 600, 899)) %>%
  group_by(clean_name) %>% 
  summarize(incent_pins = sum(ifelse(between(class, 600, 899), 1, 0))) %>%
  filter(incent_pins == 0) %>% 
  distinct(clean_name)


no_incentives <- no_incentives %>%
  left_join(muni_shp, by = c("clean_name" = "MUNICIPALITY")) 

# unincorp_areas <- muni_shp %>% filter(!MUNICIPALITY %in% munilevel$clean_name)
#anti_join(munilevel, muni_shp, by = c("clean_name" = "MUNICIPALITY"))

# unincorp_areas2 <- muni_shp %>% filter(!MUNICIPALITY %in% munilevel$shpfile_name)
Code
table_muni_percentages %>%
  select(clean_name, pct_fmv_w_incentclass, shpfile_name) %>%
 filter(!is.na(clean_name) & clean_name != "Unincorporated" ) %>%
  full_join(muni_shp, by = c("shpfile_name" = "MUNICIPALITY")) %>%
  
  ggplot(aes(fill = pct_fmv_w_incentclass)) +
  geom_sf(aes(geometry = geom), color = "black") +
  theme_void() + 
  theme(axis.ticks = element_blank(), axis.text = element_blank())+
  scale_fill_steps2(
    high = "brown", low = "black",
    show.limits=TRUE,
    nice.breaks=FALSE,
    na.value="gray",
    n =4,
    name = "Percent of Municipality FMV\nwith Incentive Classification",
    labels = scales::percent
) +
   geom_sf_pattern(data = no_incentives, aes(geometry = geom), pattern = 'crosshatch', pattern_spacing = 0.015, pattern_density = 0.1, fill = "white", alpha = .5, color = 'gray40')
Figure 9.1: Percent of Municipality FMV with Incentive Classification % = FMV from Incentive Class properties / Muni FMV
Code
table2 <- pin_data %>% 
    filter(land_use != "Land") %>%
  group_by(clean_name, incent_prop) %>%   # projects can be counted twice if the project has incentive and normal commercial/industrial prop classes.
  summarize(pin_count = n(),
         project_count = n_distinct(keypin), 
         av_adjusted=sum(ifelse(between(class, 600, 899), av*2.5, av)),
         av=sum(av, na.rm=TRUE),
fmv=sum(fmv)) 

datatable(table2,
          rownames= FALSE,
          colnames = c('Municipality' = 'clean_name',   'Incentivized?' = 'incent_prop', 'PIN Count' = 'pin_count', 'Project Count' = 'project_count', 'Taxable AV' = 'av')) %>%
  formatCurrency(c('Taxable AV', 'av_adjusted'), digits = 0)
Table 9.4: PINs and value summarized by if the property has an incentive class or not in a municipality. AV Adjusted is the amount of assessed value that could be taxed if the property were assessed at 25% instead of the lower level of assessment of approximately 10%.

Share of Commercial & Industrial FMV with Incentive Classification

Code
muni_incent_share <- pin_data %>% 
  # drop munis mostly outside of Cook and unincorporated PINs
filter(!agency_num %in% cross_county_line & !is.na(clean_name) ) %>%

  filter(land_use == "Industrial" | land_use == "Commercial") %>%
  group_by(clean_name, agency_num) %>% 
  summarize(pin_count = n(),
            incent_PC = sum(ifelse(class >=600 & class <900, 1, 0), na.rm=TRUE),
            fmv_w_incent = sum(ifelse(class >=600 & class <900, fmv, 0), na.rm = TRUE),
            project_count = n_distinct(keypin),
            fmv_group = sum(fmv, na.rm=TRUE),
            comind_fmv =sum(fmv, na.rm=TRUE),
            pins_inTIF = sum(in_tif, na.rm=TRUE)) %>%
  mutate(
    fmv_w_incent = ifelse(fmv_w_incent == 0, NA, fmv_w_incent),
    pct_fmv_w_incent = fmv_w_incent/comind_fmv,
    pct_fmv_w_incent = ifelse(is.na(pct_fmv_w_incent), 0, pct_fmv_w_incent)


) 

# muni_incentshare_slice <- muni_incent_share %>%
#   ungroup() %>%
#   mutate(pct_fmv_w_incentclass = fmv_w_incent/comind_fmv,
#          pct_fmv_w_incentclass = ifelse(is.na(pct_fmv_w_incentclass), 0, pct_fmv_w_incentclass)) %>%
#   select(clean_name, pct_fmv_w_incentclass) |> 
#   arrange(desc(pct_fmv_w_incentclass)) %>%
#   mutate(pct_fmv_w_incentclass = scales::percent(pct_fmv_w_incentclass, accuracy = 0.01) ) %>%
#   slice(c(1:10, 56:65, 110:119)) 
# 
# muni_incentshare_slice %>%
#   flextable() %>% 
#   border_remove() %>%
#   hline_top() %>%
#   hline(i = c(10,20)) %>%
#   set_header_labels(clean_name = "Municipality", pct_fmv_w_incentclass = "% FMV with\nIncent. Class.") %>%
# add_header_row(values = c("County Wide", "3.25%"), top = FALSE) %>%
#     align(j = 2, align = "right", part = "all") %>%
# 
# add_footer("There are 27 municipalities that do not use incentives and have a majority of their taxable EAV within Cook County.", top = FALSE) %>%
#   set_table_properties( layout = "autofit")


muni_incentshare_slice <- muni_incent_share  %>%
ungroup() %>%
filter(!agency_num %in% cross_county_lines) %>%
  mutate(pct_fmv_w_incentclass = fmv_w_incent/comind_fmv,
    pct_fmv_w_incentclass = ifelse(is.na(pct_fmv_w_incentclass), 0, pct_fmv_w_incentclass)) %>%
  select(clean_name, pct_fmv_w_incentclass) |> 
  arrange(desc(pct_fmv_w_incentclass)) %>%
  mutate(pct_fmv_w_incentclass = scales::percent(pct_fmv_w_incentclass, accuracy = 0.01 ) ) %>%
  slice(c(1:5, 58:62, 115:119))
  
muni_incentshare_slice %>%
  flextable() %>% 
  border_remove() %>%
  align(j = 2, align = "right", part = "all") %>%
  hline_top() %>%
  hline(i = c(5,10)) %>%
  set_header_labels(clean_name = "Municipality", pct_fmv_w_incentclass = "% FMV with\nIncent. Class.") %>%
#add_header_row(values = c("County Wide", "3.25%"), top = FALSE) %>%   align(j = 2, align = "right" ) %>%
bold(i = 8) %>%
  set_table_properties( layout = "autofit")

Municipality

% FMV with
Incent. Class.

Markham

78.77%

Sauk Village

78.23%

Mc Cook

76.47%

North Lake

72.93%

Matteson

65.14%

Rolling Meadows

10.05%

Niles

9.92%

Palos Heights

9.88%

Richton Park

9.26%

Broadview

8.73%

Stickney

0.00%

Western Springs

0.00%

Wilmette

0.00%

Winnetka

0.00%

Worth

0.00%

Table 9.5: Municipalities with the largest share of Commercial and Industrial property with incentive classification. Uses tax year 2022 values obtained from PTAXSIM, and levels of assessment from CCAO’s Github. There are 27 municipalities that do not use incentives and have a majority of their taxable EAV within Cook County.
Code
muni_incent_share %>%
  select(clean_name, pct_fmv_w_incent) %>%
  left_join(nicknames)|>
filter(clean_name != "Unincorporated") %>%
  full_join(muni_shp, by = c("shpfile_name" = "MUNICIPALITY")) %>%
  
  ggplot(aes(fill = pct_fmv_w_incent)) +
  geom_sf(aes(geometry = geom), color = "black") +
  theme_void() + 
  theme(axis.ticks = element_blank(), axis.text = element_blank())+
  scale_fill_steps2(
    high = "brown", low = "black",
    show.limits=TRUE,
    nice.breaks=FALSE,
    na.value="gray",
    n =4,
    name = "Percent of Commercial &\nIndustrial FMV with\nIncentive Classification",
    labels = scales::percent
) +
   geom_sf_pattern(data = no_incentives, aes(geometry = geom), pattern = 'crosshatch', pattern_spacing = 0.015, pattern_density = 0.1, fill = "white", alpha = .5, color = 'gray40')
Figure 9.2: Share of Commercial and Industrial FMV that has an incentive property class.

Share of Industrial FMV with Incentive Classification within each Municipality

Code
indust_share_full <- muni_sums  %>%
  
  filter(year == params$year & !clean_name %in% cross_county_line) |>
  ungroup() %>%
  mutate(pct_fmv_indust_incent =  muni_fmv_indust_incent/muni_fmv_industrial,
         pct_fmv_indust_incent = ifelse(is.na(pct_fmv_indust_incent), 0, pct_fmv_indust_incent)) %>%
  select(clean_name, pct_fmv_indust_incent) |> 
  arrange(desc(pct_fmv_indust_incent)) %>%
  mutate(pct_fmv_indust_incent = scales::percent(pct_fmv_indust_incent, accuracy = 0.01 ) ) 

indust_share <- indust_share_full %>%
  slice(c(1:5, 58:62, 115:119))

indust_share %>%
  flextable() %>% 
  border_remove() %>%
  align(j = 2, align = "right", part = "all") %>%
  hline_top() %>%
  hline(i = c(5,10)) %>%
  set_header_labels(clean_name = "Municipality", pct_fmv_indust_incent = "% FMV with\nIncent. Class.") %>%
bold(i = 8) %>%
  set_table_properties( layout = "autofit")

Municipality

% FMV with
Incent. Class.

Matteson

92.75%

Markham

92.46%

Homewood

91.47%

Phoenix

90.62%

Richton Park

89.07%

Steger

22.52%

Skokie

21.56%

Chicago

21.10%

Crestwood

20.77%

Dolton

20.53%

River Forest

0.00%

Riverside

0.00%

Rosemont

0.00%

South Barrington

0.00%

Stickney

0.00%

Table 9.6: Percent of Industrial FMV within each Municipality that has incentive classification. 37 municipalities do not use industrial incentives.

Share of Commercial FMV with Incentive Classification within each Municipality

Code
commerc_share_full <- muni_sums  %>%
  
  filter(year == params$year & !clean_name %in% cross_county_line) |>
  ungroup() %>%
  mutate(pct_fmv_commerc_incent =  muni_fmv_commerc_incent/muni_fmv_commercial,
    pct_fmv_commerc_incent = ifelse(is.na(pct_fmv_commerc_incent), 0, pct_fmv_commerc_incent)) %>%
  select(clean_name, pct_fmv_commerc_incent) |> 
  arrange(desc(pct_fmv_commerc_incent)) %>%
  mutate(pct_fmv_commerc_incent = scales::percent(pct_fmv_commerc_incent, accuracy = 0.01 ) ) 

commerc_share <- commerc_share_full %>%
  slice(c(1:5, 58:62, 115:119))

commerc_share %>%
  flextable() %>% 
  border_remove() %>%
  align(j = 2, align = "right", part = "all") %>%
  hline_top() %>%
  hline(i = c(5,10)) %>%
  set_header_labels(clean_name = "Municipality", pct_fmv_commerc_incent = "% FMV with\nIncent. Class.") %>%
bold(i = 8) %>%
  set_table_properties( layout = "autofit")

Municipality

% FMV with
Incent. Class.

Sauk Village

46.69%

Calumet Park

29.30%

Posen

28.73%

Ford Heights

28.20%

Phoenix

28.17%

Rolling Meadows

1.61%

Bedford Park

1.55%

Park Ridge

1.49%

Oak Park

1.38%

Hoffman Estates

1.29%

Rosemont

0.00%

Schaumburg

0.00%

South Barrington

0.00%

Stickney

0.00%

Stone Park

0.00%

Table 9.7: Percent of Commercial FMV within each Municipality that has incentive classification. 49 municipalities do not use commercial incentives.

The Costs of Incentives

Shifted Tax Revenue and Tax Burden

Read in CCAO level of assessment rates for each property class. Read in Summary file for Municipalities from 2006 to 2022.

Code
muni_rate <- read_csv("../Output/ptaxsim_muni_level_2006to2023.csv") %>%
  filter(year == params$year) %>%
  left_join(nicknames) %>% 
  select(clean_name, muni_current_rate_avg, muni_pct_eav_taxed,# cur_comp_muni_rate
) %>%
  rename(cur_munilevel_rate = muni_current_rate_avg)

muni_ratechange <- read_csv(paste0("../Output/muni_ratechange_", params$year, "_test.csv"))

Not Taxed Value - PIN aggregated to County Level

Code
#cook_ratechange <- read_csv("../Output/ptaxsim_cook_level_2006to2023_new.csv") |> 
 # filter(year == params$year)
Code
cook_ratechange <- pin_data %>%
  filter(!clean_name  %in% c("Frankfort", "Homer Glen",  "Oak Brook", "East Dundee",
                             "University Park",  "Bensenville", "Hinsdale", "Roselle",
                             "Deer Park", "Deerfield")) %>% 
  #group_by(class_group) %>%
  summarize(
    
    ## New Tax Base Calculations
    new_TEAV_noIncents = sum(ifelse(class >= 600 & class < 900,
                                    (taxed_av*eq_factor/loa)*0.25, taxed_av*eq_factor), na.rm=TRUE),
    
    ## NewTax Base Calculations
    new_TEAV_noCommercIncents = sum(ifelse(class >= 600 & class < 900 & class %in% commercial_classes,
                                           (taxed_av*eq_factor/loa)*0.25, taxed_av*eq_factor), na.rm=TRUE),

   new_TEAV_noIndustIncents = sum(ifelse(class >= 600 & class < 900 & class %in% industrial_classes,
      (taxed_av*eq_factor/loa)*0.25, taxed_av*eq_factor), na.rm=TRUE),

    new_TEAV_noC6 = sum(ifelse( class >=600 & class < 700, 
(taxed_av*eq_factor/loa)*0.25 , taxed_av*eq_factor), na.rm=TRUE),

    new_TEAV_noC7 = sum(ifelse(class >=700 & class < 800,
(taxed_av*eq_factor/loa)*0.25, taxed_av*eq_factor), na.rm=TRUE),

    new_TEAV_noC8 = sum(ifelse(class >=800 & class < 900, (taxed_av*eq_factor/loa)*0.25, taxed_av*eq_factor), na.rm=TRUE),
    
    new_TEAV_vacant_props = sum(ifelse(class >=600 & class <900,  # if incentive classes were assessed at 0% (aka not taxedat all) or if the building lost its value completely without the incentive classification.
                                       0, taxed_av*eq_factor), na.rm=TRUE),
    
    new_TEAV_noExemps = sum(taxed_av*eq_factor + all_exemptions, na.rm=TRUE), # does not include abatements
    new_TEAV_noAbates = sum(taxed_av*eq_factor + abatements, na.rm=TRUE), # include only abatements, not other exemption types
  
    
    # TIF increment above the frozen EAV
    forgone_TIF_EAV = sum(fmv_tif_increment * loa * eq_factor, na.rm=TRUE),
 

    cty_PC = n(),
    # projects = n_distinct(both_ids), # mostly for industrial and commercial properties
    pins_withincents = sum(ifelse(incent_prop == 1, 1, 0)),
    fmv_incentive = sum(ifelse(incent_prop == 1, fmv, 0), na.rm = TRUE),
    #fmv_taxed =  sum(taxed_fmv, na.rm=TRUE),
    fmv_incents_inTIFs = sum(ifelse(incent_prop == 1 & final_tax_to_tif > 0, fmv, 0), na.rm = TRUE),
    fmv_inTIF = sum(fmv_inTIF, na.rm=TRUE),
    fmv_tif_increment = sum(fmv_tif_increment, na.rm=TRUE),
    fmv_untaxable_value = sum(untaxable_value_fmv , na.rm=TRUE),
    fmv_exemptions = sum(all_exemptions/eq_factor/loa, na.rm=TRUE),
    fmv_abatements = sum(exe_abate/eq_factor/loa, na.rm=TRUE),
    zero_bill = sum(zero_bill, na.rm=TRUE),
    fmv_residential = sum(ifelse(res_prop==1, fmv, 0), na.rm = TRUE),
    fmv_C2 = sum(ifelse(c2_prop == 1, fmv, 0), na.rm = TRUE),
    
    fmv_industrial = sum(ifelse(class %in% industrial_classes, fmv, 0), na.rm = TRUE),
    fmv_commercial = sum(ifelse(class %in% commercial_classes, fmv, 0), na.rm = TRUE),
    
    current_rate_avg = mean(tax_code_rate),
    avg_C2_bill_noexe = mean(ifelse(between(class,200,299) & all_exemptions == 0, (final_tax_to_dist + final_tax_to_tif), NA), na.rm=TRUE),
    avg_C2_bill_withexe = mean(ifelse(between(class,200,299) & all_exemptions > 0, (final_tax_to_dist + final_tax_to_tif), NA), na.rm=TRUE),
    av_taxed = sum(taxed_av, na.rm = TRUE),
    untaxable_value_av = sum(untaxable_value_av, na.rm=TRUE),
    av = sum(av),
    eav_taxed = sum(taxed_av*eq_factor), 
    eav_untaxable = sum(untaxable_value_eav, na.rm=TRUE),
    fmv = sum(fmv, na.rm=TRUE),
    pins_in_class = n(),
    all_exemptions = sum(all_exemptions),   # in EAV
    abatements = sum(exe_abate),            # in EAV
    eav_incents_inTIFs = sum(ifelse(incent_prop == 1 & in_tif == 1, taxed_eav, 0), na.rm = TRUE),

    final_tax_to_dist = sum(final_tax_to_dist), ## Amount of Total Levy
    final_tax_to_tif = sum(final_tax_to_tif),
    eq_av = sum(eq_av)) %>%
  mutate(
   reducedEAV_comind_incents =  new_TEAV_noIncents - eav_taxed,
   reducedEAV_commerc_incents  = new_TEAV_noCommercIncents - eav_taxed,

   reducedEAV_indust_incents  = new_TEAV_noIndustIncents - eav_taxed,
    # Absolute maximum TEAV: No Exemptions, no abatements, no TIFS, no Incentive properties
    # Commercial and industrial assessed at 25%
    TEAV_max = eav_taxed + all_exemptions + abatements + forgone_TIF_EAV +    reducedEAV_comind_incents,

    # no exemptions or incentive classifications:
    TEAV_neither = eav_taxed + all_exemptions + reducedEAV_comind_incents,

    rate_noExe = final_tax_to_dist / new_TEAV_noExemps,
    rate_noCommercInc = final_tax_to_dist / new_TEAV_noCommercIncents,
    rate_noIndustInc = final_tax_to_dist / new_TEAV_noIndustIncents,

    rate_noAbate = final_tax_to_dist / new_TEAV_noAbates,
    rate_noInc = final_tax_to_dist / new_TEAV_noIncents ,
    rate_neither = final_tax_to_dist / TEAV_neither, 
    rate_noTIFs = final_tax_to_dist / (eav_taxed + forgone_TIF_EAV),
    rate_vacant = final_tax_to_dist / new_TEAV_vacant_props,
    rate_lowest = final_tax_to_dist / TEAV_max ,
    rate_current = final_tax_to_dist / eav_taxed,
    change_noInc = rate_current - rate_noInc,

    forgonerev_noExe = rate_noExe * all_exemptions,
    forgonerev_noAbate = rate_noAbate * (new_TEAV_noAbates - eav_taxed),
    forgonerev_noIncents = rate_noInc * (new_TEAV_noIncents - eav_taxed),
    forgonerev_noCommercIncents = rate_noInc * (new_TEAV_noCommercIncents - eav_taxed),

    forgonerev_noIndustIncents = rate_noInc* (new_TEAV_noIndustIncents - eav_taxed),

    forgone_noExe_or_Inc = rate_neither * (TEAV_neither - eav_taxed),
    forgonerev_noTIFs = rate_noTIFs * forgone_TIF_EAV,
    forgonerev_vacant = rate_vacant * (new_TEAV_vacant_props - eav_taxed),
    forgonerev_maxTEAV = rate_lowest * (TEAV_max - eav_taxed)
)

cook_ratechange %>%
 mutate(across(contains("rate"), scales::percent, accuracy = .01),
        change_noInc = round(change_noInc*100, digits = 2)) %>%

select("Current Composite Rate" = rate_current, 
       "Rate if Incentive Props LoA is 25%" = rate_noInc, 
       "Tax Rate Change" =  change_noInc) %>% 

  flextable()

Current Composite Rate

Rate if Incentive Props LoA is 25%

Tax Rate Change

8.56%

8.33%

0.23

Code
cook_ratechange %>% 
select("Commerc. EAV w/Incent" = reducedEAV_commerc_incents, "Indust EAV w/ Incent" = reducedEAV_indust_incents,
       "CommInd EAV w/ Incent" = reducedEAV_comind_incents,
       "Homeowner Exemption Exempt EAV" = all_exemptions) %>% flextable()

Commerc. EAV w/Incent

Indust EAV w/ Incent

CommInd EAV w/ Incent

Homeowner Exemption Exempt EAV

1,594,976,968

3,931,841,754

5,526,818,722

14,896,876,592

$15 Billion EAV is tax exempt due to homeowners exemptions. All incentive properties combined only have $4 billion EAV that is tax exempt (due to the decreased level of assessment which results in less AV, and therefore, EAV)

Estimates for Revenue Shifted to Non-Incentive Class Properties

Take new tax rate and apply it to new taxbase.

Code
cook_ratechange %>% 
select(contains("forgonerev") ) %>% flextable()

forgonerev_noExe

forgonerev_noAbate

forgonerev_noIncents

forgonerev_noCommercIncents

forgonerev_noIndustIncents

forgonerev_noTIFs

forgonerev_vacant

forgonerev_maxTEAV

1,188,336,227

407,985.9

460,637,424

132,934,717

327,702,707

0

-323,283,309

1,589,349,439

Naive Revenue Shift

Uses old current tax rate and multiplies it by the new taxbase.

Code
pin_data %>%
  filter(!clean_name  %in% c("Frankfort", "Homer Glen",  "Oak Brook", "East Dundee",
                             "University Park",  "Bensenville", "Hinsdale", "Roselle",
                             "Deer Park", "Deerfield")) %>% 
  filter(!agency_num %in% cross_county_lines & 
           !is.na(clean_name) & clean_name!="Unincorporated" )  %>%
  summarize(
    # for homestead exemptions
    mostnaive_forgone_tax_amt_exe = sum(tax_amt_exe),    
  
    # more accurate but still uses current tax rate instead of recalculated tax rate:
    forgonerev_from_exemptions  = sum(ifelse(class >= 200 & class < 300,
          (((av*eq_factor) - (taxed_av*eq_factor))) * tax_code_rate/100, 0), na.rm=TRUE),

   # amount of EAV from taxing an additional 15% of the AV if incentive properties didn't exist
   # using current tax rate for each property at the tax code level
    forgonerev_from_comind_incents  = sum(ifelse(class >= 600 & class < 900,
          (((taxed_av*eq_factor)*0.25 - (taxed_av*eq_factor))) * tax_code_rate/100, 0), na.rm=TRUE),

    forgonerev_commerc_incents  = sum(ifelse(class >= 600 & class < 900 & class %in% commercial_classes,
          (((taxed_av*eq_factor)*0.25 - (taxed_av*eq_factor))) * tax_code_rate/100, 0), na.rm=TRUE),

    forgonerev_indust_incents  = sum(ifelse(class >= 600 & class < 900 & class %in% industrial_classes,
         (((taxed_av*eq_factor)*0.25 - (taxed_av*eq_factor))) * tax_code_rate/100, 0), na.rm=TRUE),
   
    #  forgonerev_noTIFs = rate_current/100 * ,
       # TIF increment above the frozen EAV
    forgonerev_TIFs = sum(fmv_tif_increment * loa * eq_factor*tax_code_rate/100, na.rm=TRUE),
   
   # if incentive properties had no tax value (i.e. owners left, or fully tax exempt)
   # also equal to the current amount collected from incentive properties
     forgonerev_vacant = sum(ifelse(class >= 600 & class < 900,  taxed_av*eq_factor * tax_code_rate/100, 0), na.rm = TRUE)
   )

Change in Composite Property Tax Rate Due to Incentives and other Policy Scenarios

Tables - Difference in Composite Tax Rates

Code
muni_ratechange_sliced <- muni_ratechange %>% 
  # mutate(change_noInc = rate_current - rate_noInc,
  #   change_neither = rate_current - rate_neither,
  #   change_noTIF = rate_current - rate_noTIFs,
  #   change_noExe = rate_current - rate_noExe,
  #   change_vacant = rate_current - rate_vacant,
  #   change_lowest = rate_current - rate_lowest
  # )  %>%
     mutate(across(contains("rate_"), round, digits = 2))|>
  select(clean_name, rate_current, rate_noInc, change_noInc) %>% 
  arrange(desc(change_noInc) ) %>%
  mutate(across(c(rate_current, rate_noInc, change_noInc), round, digits=2)) %>%
  mutate(change_noInc = abs(round(change_noInc, digits = 2)) ) %>% 
  slice(c(1:5, 58:62, 115:119)) 

muni_ratechange_sliced %>%
  flextable() %>% 
  border_remove() %>%
  hline_top() %>%
  hline(i = c(5,10)) %>%
  set_header_labels(clean_name = "Municipality", rate_current = "Current Comp.\nTax Rate", rate_noInc = "Tax Rate if No\nIncent. Class.",
                    change_noInc = "Rate Change") %>%
  bold(i = 8) %>%
  add_footer("There are 26 municipalities that do not use incentives and have a majority of their taxable EAV within Cook County.", top = FALSE) %>%
  set_table_properties( layout = "autofit")

Municipality

Current Comp.
Tax Rate

Tax Rate if No
Incent. Class.

Rate Change

Markham

0.28

0.18

0.11

Mc Cook

0.14

0.08

0.06

Sauk Village

0.17

0.12

0.06

Matteson

0.18

0.14

0.04

North Lake

0.12

0.08

0.04

Orland Hills

0.11

0.11

0.00

Rolling Meadows

0.10

0.10

0.00

Midlothian

0.16

0.16

0.00

Richton Park

0.19

0.19

0.00

Niles

0.08

0.08

0.00

Justice

0.12

0.12

0.00

Kenilworth

0.08

0.08

0.00

La Grange Park

0.11

0.11

0.00

Merrionette Park

0.12

0.12

0.00

Morton Grove

0.09

0.09

0.00

Table 10.1: Composite Tax Rate Change from hypothetical scenario of taxing incentive property at 25% of their FMV instead of 10% of their FMV. There are 26 municipalities that do not use incentives and have a majority of their taxable EAV within Cook County.
Code
muni_ratechange %>% 
  select(clean_name, change_noInc) %>% 
#mutate(change_noInc = round(change_noInc)) %>%
  filter(clean_name != "Unincorporated") %>%
  left_join(nicknames) %>%
  full_join(muni_shp, by = c("agency_name" = "AGENCY_DESC")) %>%
  ggplot(aes(fill = change_noInc*100)) +
  geom_sf(aes(geometry = geom), color = "black") +
  theme_void() + 
  theme(axis.ticks = element_blank(), axis.text = element_blank())+
  scale_fill_steps2(
    low = "lightblue", high = "darkblue",
    show.limits=TRUE,
    nice.breaks=FALSE,
    na.value = "gray50",
    n =4,
    name = "Tax Rate Change\nin Percentage Pts") +
  
   geom_sf_pattern(data = no_incentives, aes(geometry = geom), pattern = 'crosshatch', pattern_spacing = 0.015, pattern_density = 0.1, fill = "white", alpha = .5, color = 'gray40')
Figure 10.1: Hypothetical change in composite tax rate if all value that currently receives incentive classification became assessed at 25%.
Code
muni_ratechange %>% 
  select(clean_name, change_neither) %>% 
mutate(change_neither = round(change_neither)) %>%
  filter(clean_name != "Unincorporated") %>%
  left_join(nicknames) %>%
  full_join(muni_shp, by = c("agency_name" = "AGENCY_DESC")) %>%

  ggplot(aes(fill = change_neither*100)) +
  geom_sf(aes(geometry = geom), color = "black") +
  theme_void() + 
  theme(axis.ticks = element_blank(), axis.text = element_blank())+
  scale_fill_steps2(
    low = "black", high = "brown",
    show.limits=TRUE,
    nice.breaks=FALSE,
na.value = "gray50",
    n =4,
    name = "Tax Rate Change\nin Percentage Pts") +
   geom_sf_pattern(data = no_incentives, aes(geometry = geom), pattern = 'crosshatch', pattern_spacing = 0.015, pattern_density = 0.1, fill = "white", alpha = .5, color = 'gray40')
Figure 10.2: Hypothetical change in composite tax rate if all value that currently receives incentive classification became assessed at 25% and exempt EAV from GHE became taxable.
Code
# as a dot graph ## 
# create order of dots
order <- muni_ratechange %>%  
  as_tibble() %>% 
 filter(change_noInc >0) %>%
  arrange(rate_current) %>%
  select(clean_name, rate_current)

# make dot graph
muni_ratechange %>% 
 filter(change_noInc > .007) %>%
  select(clean_name, rate_current, rate_noInc) %>% 
  distinct() %>%
  arrange(rate_current) %>%
  pivot_longer(c("rate_current", "rate_noInc"), 
               names_to = "type", values_to = "tax_rate") %>% 
  inner_join(order) %>%
  ggplot(aes(x = tax_rate, y= reorder(clean_name, rate_current)))+
  geom_line(aes(group = clean_name))+ 
  geom_point(aes(fill=type), size=3, pch = 21, color = "black" 
             )+
    # scale_color_manual(palette="Blues", 
    #                  labels = c("Current Rate", "No Incentives")#,  
    #               #   values = c("#A6CEE3", "#1F78B4" )
    #                  )+
  theme_minimal() + 
  theme( 
    legend.title = element_blank(),
    plot.title.position = "plot",
    plot.background = element_rect(fill='transparent', color=NA) #transparent plot bg
  )+
  scale_fill_brewer(palette="Paired", labels = c("Incentives", "No Incentives"), direction = 1)+

  
  labs(title = "Difference in Composite Tax Rate if Assessed at 25%",
       subtitle = "Ordered by Current Composite Tax Rate", x = "Composite Tax Rate (%)", y = "")
Figure 10.3: Change in tax rate if incentive properties were assessed at 25% of their FMV instead of their reduced level of assessment.
Code
# as a dot graph ## 
# create order of dots
order <- muni_ratechange %>%  
  as_tibble() %>% 
  filter(change_noInc > 0) %>% 
  arrange(change_noInc) %>%
  select(clean_name, change_noInc) %>%
  distinct()


# make dot graph
muni_ratechange %>% 
  filter(change_noInc > .005) %>%
  filter(change_noInc > 0) %>%

  select(clean_name, rate_current, rate_noInc, change_noInc) %>% 
  distinct() %>%
  pivot_longer(c("rate_current", "rate_noInc"), 
               names_to = "type", values_to = "tax_rate") %>% 
  left_join(order) %>%
    filter(change_noInc > 0 ) %>%
  mutate(clean_name = if_else(clean_name == "Mc Cook", "McCook", clean_name)) %>%
  ggplot(aes(x = tax_rate, y= reorder(clean_name, change_noInc)))+
  geom_line(aes(group = clean_name))+ 
  geom_point(aes(fill=type), size=3, pch = 21, color = "black" )+
  theme_minimal() + 
  theme( 
    legend.title = element_blank(),
    plot.title.position = "plot",
    plot.background = element_rect(fill='transparent', color=NA) #transparent plot bg
  )+
  scale_fill_brewer(palette="Paired", labels = c("Incentives", "No Incentives"), direction = 1)+
  
  labs(title = "Difference in Composite Tax Rate if Assessed at 25%",
       subtitle = "Ordered by Comp. Rate Change", x = "Composite Tax Rate (%)", y = "")
Figure 10.4: Change in Tax Rate from use of Incentives. Ordered by amount of change in the composite tax rate. Only shows municipalities that had more than 1/2 percentage point change in tax rate.
Code
# as a dot graph ## 
# create order of dots
order <- muni_ratechange %>%  
  as_tibble() %>% 
  filter(change_noInc > 0) %>%
  arrange(rate_current) %>%
  select(clean_name, rate_current) %>% distinct()

# make dot graph
muni_ratechange %>% 
  filter(change_noInc > .005) %>%
  select(clean_name, rate_current, rate_noInc, #rate_neither, 
         rate_vacant, rate_noExe) %>% 
  distinct() %>%
  arrange(rate_current) %>%
  pivot_longer(c("rate_current", 
                 "rate_noInc", 
                 "rate_vacant", 
                 "rate_noExe"# ,
                #  "rate_neither"
), 
               names_to = "type", values_to = "tax_rate") %>% 
  inner_join(order) %>%
  ggplot(aes(x = tax_rate, y= reorder(clean_name, rate_current)))+
  geom_line(aes(group = clean_name))+ 
  geom_point(aes(fill=type), size=3, pch = 21, color = "black" )+
  theme_minimal() + 
  theme( 
    legend.title = element_blank(),
legend.position = "bottom",
plot.title.position = "plot",
    plot.background = element_rect(fill='transparent', color=NA) #transparent plot bg
  )+
  scale_fill_brewer(palette = "RdGy",
                    labels = c("Current Rate", 
                             #  "No Exemps & LoA is 25%",
                               "No Exemptions", 
                               "No Incentives:\nLoA 25%",
                               "Incententive Classification\nLoA = 0%"
                    ), 
                    direction = -1)+
  labs(title = "Composite Tax Rate Scenarios",
       subtitle = "Ordered by Current Composite Tax Rate", 
       x = "Composite Tax Rate (%)", y = "")
Figure 10.5: Only shows municipalities that had more than 1/2 percentage point change in tax rate.
Code
# as a dot graph ## 
# create order of dots
order <- muni_ratechange %>%  
  as_tibble() %>% 
  filter(change_noInc > 0) %>%
  arrange(rate_current) %>%
  select(clean_name, rate_current) %>% distinct()

# make dot graph
muni_ratechange %>% 
  filter(change_noInc > 0) %>%
  select(clean_name, rate_current, rate_noInc, #rate_neither, 
         rate_vacant, rate_noExe) %>% 
  distinct() %>%
  arrange(rate_current) %>%
  pivot_longer(c("rate_current", 
                 "rate_noInc", 
                 "rate_vacant", 
                 "rate_noExe"# ,
                #  "rate_neither"
), 
               names_to = "type", values_to = "tax_rate") %>% 
  inner_join(order) %>%
  ggplot(aes(x = tax_rate, y= reorder(clean_name, rate_current)))+
  geom_line(aes(group = clean_name))+ 
  geom_point(aes(fill=type), size=3, pch = 21, color = "black" )+
  theme_minimal() + 
  theme( 
    legend.title = element_blank(),
legend.position = "bottom",
plot.title.position = "plot",
    plot.background = element_rect(fill='transparent', color=NA) #transparent plot bg
  )+
  scale_fill_brewer(palette = "RdGy",
                    labels = c("Current Rate", 
                             #  "No Exemps & LoA is 25%",
                               "No Exemptions", 
                               "No Incentives:\nLoA 25%",
                               "Incententive Classification\nLoA = 0%"
                    ), 
                    direction = -1)+
  labs(title = "Composite Tax Rate Scenarios",
       subtitle = "Ordered by Current Composite Tax Rate", 
       x = "Composite Tax Rate (%)", y = "")
Figure 10.6: Same as figure above but includes all municipalities that had a taxrate change from altering the level of assessment for incentive class properties.
Code
# as a dot graph ## 
# create order of dots
order <- muni_ratechange %>%  
  as_tibble() %>% 
  filter(change_noInc > .005) %>%
  arrange(rate_current) %>%
  select(clean_name, rate_current) %>% distinct()

# make dot graph
muni_ratechange %>% 
 filter(change_noInc > .005) %>%
  select(clean_name, rate_current, rate_noInc, rate_vacant) %>% 
  distinct() %>%
  arrange(rate_current) %>%
  pivot_longer(c("rate_current", 
                 "rate_noInc", 
                 "rate_vacant"
                 ), 
               names_to = "type", values_to = "tax_rate") %>% 
  inner_join(order) %>%
  ggplot(aes(x = tax_rate, y= reorder(clean_name, rate_current)))+
  geom_line(aes(group = clean_name))+ 
  geom_point(aes(fill=type), size=3, pch = 21, color = "black" )+
  theme_minimal() + 
  theme( 
    legend.title = element_blank(),
legend.position = "bottom",
plot.title.position = "plot",
    plot.background = element_rect(fill='transparent', color=NA) #transparent plot bg
  )+
  scale_fill_brewer(palette = "Greys", direction = -1,
                    labels = c("Current Rate", 
                             #  "No Exemps & LoA is 25%",
                             #  "If no Exemptions", 
                               "No Incentive Classes: \nLoA = 25%",
                               "Incentive Classification\nLoA = 0%"
                    )
)+
  labs(title = "Composite Tax Rate Scenarios",
       subtitle = "Ordered by Current Composite Tax Rate", 
       x = "Composite Tax Rate (%)", y = "")
Figure 10.7: Only shows municipalities that had more than 1/2 percentage point change in tax rate.
Code
library(ggrepel)
# make dot graph
muni_ratechange %>% 
  filter( clean_name =="Markham" ## | clean_name == "Matteson"
          ) %>%
  select(clean_name, rate_current, rate_noInc, rate_neither, rate_vacant, rate_noExe) %>% 
  distinct() %>%
  arrange(rate_current) %>%
  pivot_longer(c("rate_current", "rate_noInc", 
                  "rate_vacant", "rate_noExe",
                  "rate_neither"), 
               names_to = "type", values_to = "tax_rate") %>% 
  inner_join(order) %>%
  ggplot(aes(x = tax_rate, y= reorder(clean_name, rate_current)))+
  geom_line(aes(group = clean_name))+ 
  geom_point(aes(fill=type), size=3, pch = 21, color = "black" )+
  geom_text_repel(aes(x=tax_rate),
                  hjust = 0,
                  vjust = -1,
                  min.segment.length = Inf,
                  size = 3,
                  angle = 30,
                  label = c("Current Rate", "If LoA 25%" ,
                            "If Vacant" , "If no Exemps",
                            "No Exemps & LoA is 25%") )+
  theme_minimal() + 
  theme( 
    legend.title = element_blank(),
    plot.title.position = "plot",
    plot.background = element_rect(fill='transparent', color=NA),
    legend.position = "none"  )+
  scale_fill_manual(
    values = c("#BDD7E7", "#6BAED6", "#3182BD", "#EFF3FF",  "#08519C")) +
  scale_x_continuous(limits = c(.17, .35)) + 
  scale_y_discrete(
    expand = expand_scale(mult = c(.1, 1)) ,
           #        limits = c("Markham")#, breaks = "Markham"
                   )  + 
  labs(
    x = "Composite Tax Rate (%)", 
    y = "")